Wenn sich Metalle zu einer Legierung vereinen, setzt sich in deren Mikrostruktur einiges in Bewegung. Wie fest, belastbar, hitzebeständig und chemisch homogen das Endprodukt, zum Beispiel eine Turbinenschaufel letztendlich ist, hängt stark von den thermo-mechanischen Belastungen während der Herstellung ab. Gerade für Hochleistungslegierungen, wie sie in der Luftfahrt zum Einsatz kommen, sind hierbei noch viele Detailfragen ungeklärt.
„Wir wissen zwar, dass thermomechanische Prozesse im Design von Hochleistungswerkstoffen eine wichtige Rolle spielen. Nichtsdestotrotz ist die Steuerung der erwünschten Eigenschaften einer Legierung mittels konkreter Prozessparameter und Prozessrouten noch eine Herausforderung für die Industrie und ein heißes Thema in der Metallforschung.“, sagt Maria Cecilia Poletti, Materialforscherin am Institut für Werkstoffkunde, Fügetechnik und Umformtechnik der TU Graz. Poletti leitet das „Christian Doppler Labor für Design von Hochleistungslegierungen mittels thermo-mechanischer Prozesstechnik“, das heute, Dienstag, den 31. Oktober 2017, an der TU Graz eröffnet wurde.
Wirtschaftsminister Mahrer: Wettbewerbsvorteile durch Grundlagenforschung
„Hochleistungslegierungen spielen eine wichtige Rolle für den technischen Fortschritt im Leichtbau und im Bereich Automotive“, sagt Wissenschafts- und Wirtschaftsminister Harald Mahrer. „In diesem CD-Labor wird die Grundlage für praktische Anwendungen gelegt, von denen wichtige Industriezweige in Österreich profitieren. Das Zusammenspiel zwischen Wissenschaft und Wirtschaft ist dafür eine perfekte Grundlage und ermöglicht Forschung entlang der Bedürfnisse der Betriebe.“
Gießen oder kneten in der „Legierungsküche“
Im ihrem Herstellungsprozess sind alle Arten von Legierungen thermomechanischen Belastungen ausgesetzt: Gusslegierungen in der Nachbehandlung und Knetlegierungen während der Verarbeitung. Bei flüssig in Form gegossenen Legierungen entstehen bei der Erkaltung des Bauteils innere Spannungen, die zu unerwünschten Verbiegungen des Bauteils führen können und die Festigkeit mindern. Eine Wärmebehandlung durch wiederholtes Aufheizen und schnelles Abkühlen baut die mechanischen Spannungen in der Mikrostruktur des Bauteils wieder ab. Knetlegierungen werden zwar auch gegossen, aber wiederholt bei sehr hoher Temperatur und mit unterschiedlichen Geschwindigkeiten geknetet, bevor sie in Form gebracht werden. Unter Kneten ist in dem Fall jegliche mechanische Belastung gemeint, die zu einer plastischen Verformung führt – etwa Schmieden, Walzen oder Strangpressen. Wie beim Kneten eines Teiges vereinen sich die einzelnen Bestandteile zu einem Material, das anschließend in Form ‚gebacken‘ wird. „Wir wollen im Rahmen des CD-Labors ein tieferes Verständnis der Mikrostrukturentwicklung während thermo-mechanischer Prozesse erhalten. Denn diese nicht sichtbare Form des Gefüges hat größten Einfluss auf die mechanischen Eigenschaften des Bauteils im Einsatz, zum Beispiel im Fahrwerk oder im Turbinenrad eines Flugzeuges.“, erklärt Maria Cecilia Poletti. „Wie bei einem guten Kochrezept wollen wir genau wissen, welche Zutaten, Mengenangaben, Temperaturen, Reihenfolge und Zeitangaben es braucht, um am Ende eine Legierung mit den genau gewünschten Eigenschaften zu erhalten“.
Der Fokus des neuen CD-Labors liegt auf Nichteisenlegierungen, etwa Titan-, Nickel- oder Aluminiumlegierungen, für Bauteile und deren Verarbeitungsprozesse. Das Team des CD-Labors wird die physikalischen Phänomene, die in metallischen Werkstoffen während der industriellen Herstellung und nachfolgenden Anwendung auftreten, charakterisieren, beschreiben und modellieren und darauf aufbauend physikalisch-basierte Multiskalenmodelle entwickeln, die für verschiedene Materialien und Verfahren verallgemeinert angewendet werden können. Die Forschenden bedienen sich dafür unterschiedlicher Methoden, von Experimenten im Labor über Modellbildung, Mikroskopie, bis zu Röntgenuntersuchungen. Unternehmenspartner für sieben Jahre sind der Metallproduzent Nemak mit Sitz in Mexiko und in Linz, der Gussaluminiumteile für die Automobilindustrie herstellt, sowie die BÖHLER Schmiedetechnik GmbH mit Sitz in Kapfenberg, die sich im Bereich von Knetlegierungen auf Titan- und Nickelbasis einbringt. Von den beiden Firmenpartnern und der Christian Doppler Gesellschaft fließen insgesamt rund 3 Millionen Euro in das CD-Labor, bei einer Laufzeit von sieben Jahren.
Aktive (und bereits eröffnete) CD-Labors der TU Graz:
- CD-Labor für Design von Hochleistungslegierungen mittels thermomechanischer Prozesstechnik
- CD-Labor für modellbasierte Regelung komplexer Prüfstandssysteme
- CD-Labor für bürstenlose Antriebe für Pumpen- und Lüfteranwendungen
- CD-Labor für Faserquellung und deren Einfluss auf die Papiereigenschaften
- CD-Labor für Semantische 3D Computer Vision
- CD-Labor für Lithium-Batterien – Alterungseffekte, Technologie und neue Materialien