Machine dynamics deals with the external and internal forces that work in machines as well as the vibration processes in the entire field of mechanical engineering. Computation of vibration modes, journal bearing damping and amplitude calculations are the main means for secure vibration tuning to avoid resonances and overstrain in machine elements.
Non-linear elements like the oil film in journal bearings represent the greatest computational difficulty. But currently, it is possible to predetermine the entire oscillation behavior and the sound radiation of a diesel engine with numerical methods. The same applies to the quietness and the vibration safety of the rotors and turbine blades, and for short-circuit resistance of the turbo sets.
However, appropriate experiments are necessary in the case of complicated forms of vibration behavior as well as damping parameters. The research works of the institute deal with short-circuit states in turbo sets, rotor dynamics and internal shaft cooling of high frequency motors, vibrations and functional behavior of string stranding machines, calculations of vibrating foundations, functional behavior and vibration behavior of rock milling, study of the sound radiation from power plant components and sound attenuation by active sound control as well as the reduction of sound radiation of vibrating surfaces.
The institute has a test rig
(STTF) where the flow phenomenon and vibration behavior of rotor and blades may be tested under appropriate conditions. With rotor dynamic monitoring devices these processes can be analyzed and so, comparison of the measurements with computational solutions are possible. In this way, required improvements in the analytical models for vibration monitoring in rotating machines and diagnostic methods is made possible. As a result vibration reduction can be achieved and therefore service life and safety can be increased. Additionally, possibilities for an effective noise control can be found.