The goal of this finished project was the research and development of state of the art computer vision and object recognition algorithms to analyze face portrait images according to the
ICAO (International Civil Aviation Organization) standards and specifications. Therefore a close cooperation with
Siemens IT Solutions and Services Biometric Center in Graz existed, where the Biometry group was developing a software solution for this purpose.
Current passports issued in the European Union contain biometric data like e.g. digital photographs and fingerprints in order to uniquely identify its owner. To be able to read passports all over the world, the ICAO has specified a number of guidelines and requirements for the structure of these biometric features. In case of face portrait images, examples for these requirements are neutral appearance, eyes opened, mouth closed, frontal pose, straight-looking eyes, properly-sitting eye-glasses, or uncovered faces. Since these analysis steps have to be performed in an automatic fashion, each of these requirements imposes certain computer vision research challenges which are tackled in this research project. Examples for the topics involved in these analysis steps are model-based segmentation using active shape and active appearance models, fast and robust AdaBoost based machine learning algorithms for face and face component detection, or classification of facial expressions using multi-classifier fusion approaches.