SUBPROJECT A "DEPENDABLE WIRELESS COMMUNICATION AND LOCALIZATION"
The use of Ultra Wide Band signals, in combination with adaptable transceiver frontends such as steerable, directive antennas – as investigated during the first project phase – has allowed us to increase the dependability of wireless communication and localization services. Most notably, we have achieved a reliable and highly accurate (centimeter-level) positioning despite the use of minimal infrastructure, which paves the way for new end-user applications. Accurate positioning also led to an improved location awareness: we have exploited locationresolved models of the environment to predict and control the dependability level of a wireless network. Building upon these findings, we now tackle the challenge of scaling up the developed system components towards realistic end-user scenarios. Consider, for example, large floor areas in industrial settings and retail (often highly cluttered by metal objects) and huge amounts of objects/products/nodes to be connected and located. We willspecifically investigate the scalability towards larger areas and more access points, more agent nodes, realistic, highly cluttered environments, and higher mobility of agent nodes. On the hardware side, we will investigate the impact of scaling the carrier frequency towards the mm-wave band. Millimeter-wave radios offer much higher bandwidth and a better beamforming capability, both of which can improve system-wide scalability and positioning performance. Increasing the system’s scalability will be the unifying, joint challenge addressed in the second project phase.
Coordinator: Prof. Klaus Witrisal
Key Researchers: Prof. Wolfgang Boesch, Prof. Kay Roemer
Associated Researchers: Dr. Carlo Alberto Boano, Dr. Jasmin Grosinger, Dr. Erik Leitinger, Dr. Reinhard Teschl
PhD students: Gerzon Gomez Bravo, Agnes Koller, Maximilian Schuh