Offen im Denken

ISBURG

Planning of Grid and Supply Restoration in the Distribution Grid with a High Proportion of Renewable Energies and Distributed Generation

Yasir Shamim Hendrik Vennegeerts

18. Symposium Energieinnovation, Graz, 16.02.2024

elektrische Energiesysteme, Univ.-Prof. Dr.-Ing. Hendrik Vennegeerts

Motivation

Background

- Decommissioning of conventional plants
- Decentralized shift of generation to Distribution System Operator (DSO) grids
- Intermittency of renewable energy sources (RES)

Challenges

- Power system states closer to stability margin
- Decrease in available balancing energy in Transmission System Operator (TSO) grid
- Time dependency of available generation
- Impact of high share of renewables not only in normal grid operation but also needs to be coped in emergency situations

Grid and Supply Restoration (1/2)

- Classical restoration approach
 - Voltage from neighboring TSOs
 - Using own black start (BS) units

Switching on start-up grid

- Start BS unit
- Synchronization of secured energy
- Switching of secured loads

Future trend

- **RES:** Provide necessary functions
 - Grid operators require additional tools

ISBURG

- Compensation for ancillary services
- **TSO**↔**DSO**: Intensive co-operation
 - TSO: Involve DSO in grid restoration
 - DSO: Develop concepts to integrate renewables
- Focus on advanced restoration concepts (build-up/build-together)
- Shift from sequential to parallel system restoration approach

Grid and Supply Restoration (2/2)

Idea: Parallel Restoration - Approach: Sectionalization Strategy - Objective: Reduced total restoration time

eES

Yasir Shamim | Planning of Grid and Supply Restoration in the Distribution Grid with a High Proportion of Renewable Energies and Distributed Generation | 18. EnInnov | 16.02.2024

ISBURG

Methodology

Sectionalization planning

- Network modelling
 - Graph theory
 - K-shortest path algorithm

Heuristic initialization

- Expert's knowledge and experience
 - Generator grouping
 - Searching movement

Discrete Evolutionary Programming (DEP)

- Discrete optimization technique
 - Minimal cut sets
 - Similar restoration times among islands

Yasir Shamim | Planning of Grid and Supply Restoration in the Distribution Grid with a High Proportion of Renewable Energies and Distributed Generation | 18. EnInnov | 16.02.2024

Sectionalization Planning (1/2)

Yasir Shamim | Planning of Grid and Supply Restoration in the Distribution Grid with a High Proportion of Renewable Energies and Distributed Generation | 18. EnInnov | 16.02.2024

INIVERSITÄT

UISBURG

Sectionalization Planning (2/2)

- Network modelling using Graph theory
- Post-blackout ^H Undirected network
 - V = set of nodes, E = set of edges, W = weight factors of each edge

eES

Yasir Shamim | Planning of Grid and Supply Restoration in the Distribution Grid with a High Proportion of Renewable Energies and Distributed Generation | 18. EnInnov | 16.02.2024

INIVERSITÄT

ISBURG

Heuristic Initialization Method (1/2)

Determination of reasonable initial cut set

- Reduction of search space for possible lines
- Closer to optimal solution

Methodology

- Generator skeleton groups
- Initial skeleton point generator nodes
- Skeleton point expansion time
- Searching movement

Number of BS units Connection of

Lowest restoration

Initial cut set

DUISBURG ESSEN Offen im Denken

UNIVERSITÄT

Generator grouping & initial cut set

eES

Yasir Shamim | Planning of Grid and Supply Restoration in the Distribution Grid with a High Proportion of Renewable Energies and Distributed Generation | 18. EnInnov | 16.02.2024

Discrete Evolutionary Programming

 Objective: Similar restoration time among the islands with minimal cut sets

- •
 - Initialization population
 - Mutation (new population)
 - Combination population
 - Selection function value

objective function calculation objective function calculation New and initial

Minimal objective

UNIVERSITÄT

<mark>Dຼ</mark>ູບູໄ_ຣSຼB_NU R G

Simulation Results IEEE 39-Bus System

- Heuristic Initialization
 - Initial cut set definition
 - searching step
 - searching step

DEP application

- Final network expansion
- Optimal cut set solution
 - {,,,}

Yasir Shamim | Planning of Grid and Supply Restoration in the Distribution Grid with a High Proportion of Renewable Energies and Distributed Generation | 18. EnInnov | 16.02.2024

INIVERSITÄT D_U_I_S_B_U_R_G

Adaptation for Distribution Network

- Extended forecasting and control procedures
 - Compliance with specified power bands
- Additional restoration constraints
 - DG dynamics and safety operational procedures
- Time dependency of available generation
 - Fast calculation of optimal islands
- Location of the remote controllable stations
 - Efficient island creation

- Parallel restoration approach is effective to handle energy transition
- Optimal restoration solution for network planning and reconfiguration
- Framework for extension of restoration concept for DSO

Potential challenges in the distribution grid to be adapted

Thank you for your attention

Yasir Shamim | Planning of Grid and Supply Restoration in the Distribution Grid with a High Proportion of Renewable Energies and Distributed Generation | 18. EnInnov | 16.02.2024