

# Schwarzstart, Betrieb und Synchronisation eines umrichterbasierten Inselnetzes geführt durch einen netzbildenden Batteriespeicher

Carolin Vogel

Technische Universität München

TUM School of Engineering and Design

Lehrstuhl für Elektrische Energieversorgungsnetze

Graz, 16. Februar 2024





### **Motivation**

Übergeordnetes Ziel: Konzept für den Inselnetzbetrieb mit netzbildendem Batteriespeicher (BESS)

- 1. Anwendungsnahe Untersuchung verschiedener Inselnetzbetriebsfälle im Testaufbau
  - → Verhalten des BESS bei Belastung (Entladen und Laden)
  - → Belastungsgrenzen des BESS im Inselnetzbetrieb
  - $\rightarrow$  Interaktion mit weiteren netzbildenden Einheiten
  - $\rightarrow$  Synchronisation mit dem öffentlichen Netz
- 2. Praktische Erfahrung im Umgang mit der Steuerung und Parametrierung
- 3. Datengrundlage für weiterführende simulative Untersuchungen
  - $\rightarrow$  Validierung und Anpassung vorhandener Modelle anhand der erhobenen Messdaten
  - → Integration weiterer Komponenten (z. B. dezentrale Erzeugungsanlagen oder Lasten)

16. Februar 2024 | EnInnov 2024 | Carolin Vogel | Technische Universität München



### Der Inselnetz-Testaufbau



#### Tabelle 1: Elektrische Kenndaten der Komponenten des Testaufbaus

|           |        | Nennleistung      | Nennstrom         | Leistungsfaktor   |
|-----------|--------|-------------------|-------------------|-------------------|
| BESS      | [2]    | 68,5 kVA          | 100 A             | -1,0 bis 1,0      |
| NEA       | [3]    | 50 kVA            | 72 A              | 0,8               |
| GLB       | [4]    | 1.000 kVA         | 1,4 kA            | 0,8 bis 1,0       |
| ASM       | [5]    | 11 kW             | 23 A              | 0,84              |
| C-Bank    | [6]    | 35 kvar           | 51 A              | 0                 |
| 16 Februa | ar 202 | 24   EnInnov 2024 | 4   Carolin Vogel | L Technische Univ |

Abbildung 2: Der Inselnetz-Testaufbau am Campus der OTH Regensburg (Foto: Ludwig Brey, FENES) [1]



#### chnische Universität München



### Parametrierung des BESS im netzbildenden Betriebsmodus

Netzbildende Funktion basierend auf Droop Regelung

- $\rightarrow$  Spannung im Inselnetz anhand U(Q)-Statik
- Frequenz im Inselnetz anhand *f*(*P*)-Statik

Spannung und Frequenz im Inselnetz entsprechen nur dann den Referenzwerten, wenn BESS die Referenzleistung bereitstellt.

| Tabelle 2. Parameter zur Einstellung des netzbildenden Betrebsmodus des BESS |               |                             |                                    |                        |                 |  |
|------------------------------------------------------------------------------|---------------|-----------------------------|------------------------------------|------------------------|-----------------|--|
|                                                                              |               | Verfügbarer Einstellbereich |                                    |                        | lus Detrick     |  |
|                                                                              | Name          | minimal                     | maximal                            | default                | veränderbar     |  |
| Referenzwirkleistung                                                         | $P_{\rm ref}$ | -68,5 kW                    | 68,5 kW                            | 0 kW                   | ja              |  |
| Referenzblindleistung                                                        | $Q_{ref}$     | -68,5 kvar                  | 68,5 kvar                          | 0 kvar                 | ja              |  |
| Referenzfrequenz                                                             | $f_{ m ref}$  | 47,5 Hz                     | 52,5 Hz                            | 50 Hz                  | ja              |  |
| Referenzspannung                                                             | $U_{\rm ref}$ | 208 V                       | 253 V                              | 230 V                  | ja              |  |
| 18teigung den f(P)-Statikinn                                                 | ov 2024       | l Carolin V                 | ogel <sup>2</sup> <sup>%</sup> Tec | hni <del>s</del> che L | niversität Münd |  |
|                                                                              |               | ' <u> </u>                  |                                    | <b>F</b> 0/            |                 |  |

Taballa 2: Daramatar zur Einstellung das netzbildenden Patrichemedus das PESS





### Symmetrische Belastung des netzbildenden BESS





### Verteilte Inselnetzbildung mit BESS und NEA (1/2)





ю



# Verteilte Inselnetzbildung mit BESS und NEA (2/2)

Wiederholt Leistungspendelungen zwischen NEA und BESS, insbesondere bei kleiner f(P)-Statik

- → OK solange NEA Leistung einspeist (Versorgung der Last und Laden des BESS)
- → Aber: Abschaltung des NEA bei Rückspeisung (Schutzauslösung)
- → Weiterversorgung nur innerhalb der Leistungsgrenzen des BESS möglich

#### Abbildung 10: Kurzzeitige Leistungsaufteilung Abbildung 11: Leistungspendelungen Abbildung 12: NEA-Rückspeisung, Abschaltung -Messung BESS, s<sub>f min</sub>....Messung NEA, s<sub>f min</sub> -Messung BESS, s<sub>f min</sub>-Messung BESS, s<sub>etd</sub> –Messung BESS, s<sub>f.min</sub>....Messung NEA, s<sub>f.min</sub> 20 Messung NEA, s, min Messung NEA, s, etd 20 Wirkleistung P in kW ∧ 1r L ٩ Wirkleistung Wirkleistung 5 -10 -10 -15 -15 300 50 100 150 200 250 3 350 400 450 500 550 2 Zeit t in s Zeit t in s Zeit t in s

### 10 ms-RMS-Daten und zyklische 200 ms-Daten der Wirkleistung, gemessen an BESS und NEA

16. Februar 2024 | EnInnov 2024 | Carolin Vogel | Technische Universität München



### Synchronisation mit dem öffentlichen Netz





# Einordnung der Ergebnisse

Belastungsgrenzen des BESS

→ Kurzzeitige Überlastungen und sprunghafte Leistungsänderungen werden vom BESS abgefangen (z. B. Ausfall zusätzlicher Erzeugungseinheiten durch Schutzauslösung oder Zuschaltung dynamischer Lasten)
 → Abschätzung der Spannung und Frequenz im Inselnetz bei bekannter Lastsituation im Vorfeld möglich

### Verteilte Netzbildung

→ Koordinierte Leistungsaufteilung bei mehr als einem Netzbildner durch abgestimmte Regelung möglich
 → Alternativ: Einbinden weiterer Erzeugungseinheiten im netzstützenden statt netzbildenden
 Betriebsmodus

Synchronisation

 → Netzangleichung durch Kennlinienverschiebung unabhängig von der Steigung der Statiken möglich
 → Anpassung der Synchronisationsbedingungen kann Netzrückwirkungen verringern, insbesondere bei Last- und Erzeugungsschwankungen dauert Netzangleichung ggf. länger oder ist u. U. nicht möglich
 16. Februar 2024 | Enline 2024 | Carolin Vogel | Technische Universität München



### Vielen Dank für Ihre Aufmerksamkeit.

### **Carolin Vogel**

Technische Universität München TUM School of Engineering and Design Lehrstuhl für Elektrische Energieversorgungsnetze

carolin.vogel@tum.de

18. Symposium Energieinnovation Graz, 16. Februar 2024





### Referenzen

[1] L. Brey, "Erprobung von Inselnetz-Betriebsstrategien im Outdoor-Leistungslabor am Campus der OTH Regensburg", 2023. [Online]. https://forschungsprojekt-industriezelle.de/blog-post/
[2] INTILION AG, "Technisches Datenblatt, scalebloc, power boost, 68,5 kVA"
[3] Bredenoord BV, "Technische Daten, Aggregat 50 kVA Super Silent"
[4] Bredenoord BV, "Technische Daten, induktiver Lastwiderstand, 1000 kVA"
[5] Schorch-Werke AG Rheydt, "Typenschild, d3KHC 550/4"
[6] Condensator Dominit, "Technische Daten, Festkondensator CLMD, 35 kvar"
[7] KORA Industrie-Elektronik, "Handbuch, Synchronisier-Gerät SYN-8", 2021.
[8] VDE, "VDE-AR-N 4105 - Anwendungsregel: 2018-11, Erzeugungsanlagen im Niederspannungsnetz", 2018.
[9] VDE, VDE AB N 4110, Anwendungsregel: 2023 00, Technische Begeln für den Anschluss von

[9] VDE, "VDE-AR-N 4110 - Anwendungsregel: 2023-09, Technische Regeln für den Anschluss von Kundenanlagen an das Mittelspannungsnetz und deren Betrieb (TAR Mittelspannung)", 2023.



### Anhang: Sonderfälle, Belastung des netzbildenden BESS







### Anhang: Parametersätze des netzbildenden BESS

| T | <u>abelle A.1: Parametersätze des netzbildenden Betriebsmodus des BESS im Testaufbau</u> |                         |                  |                    |                    |                    |                    |
|---|------------------------------------------------------------------------------------------|-------------------------|------------------|--------------------|--------------------|--------------------|--------------------|
|   |                                                                                          |                         | S <sub>std</sub> | S <sub>f,min</sub> | S <sub>f,max</sub> | S <sub>u,min</sub> | S <sub>u,max</sub> |
|   | $P_{ref}$                                                                                |                         | 0 kW             | 0 kW               | 0 kW               | 0 kW               | 0 kW               |
|   | $Q_{ref}$                                                                                |                         | 0 kvar           | 0 kvar             | 0 kvar             | 0 kvar             | 0 kvar             |
|   | <b>f</b> <sub>ref</sub>                                                                  |                         | 50 Hz            | 50 Hz              | 50 Hz              | 50 Hz              | 50 Hz              |
|   | $U_{ref}$                                                                                |                         | 230 V            | 230 V              | 230 V              | 230 V              | 230 V              |
|   | S <sub>f</sub>                                                                           | P <sub>lim</sub>        | 68,5 kW          | 68,5 kW            | 68,5 kW            | 68,5 kW            | 68,5 kW            |
|   |                                                                                          | f <sub>delta</sub>      | 0,5 Hz           | 0,05 Hz            | 1,0 Hz             | 0,5 Hz             | 0,5 Hz             |
|   | s <sub>u</sub>                                                                           | <b>Q</b> <sub>lim</sub> | 68,5 kvar        | 68,5 kvar          | 68,5 kvar          | 68,5 kvar          | 68,5 kvar          |
|   |                                                                                          | U <sub>delta</sub>      | 5 %              | 5 %                | 5 %                | 2 %                | 10 %               |

