

Offen im Denken

Kodierung der Ausbauplanung von elektrischen Niederspannungsnetzen

Carsten Graeve Hendrik Vennegeerts

Graz, 15.02.2024, 18. Symposium Ennergieinnovation

Motivation

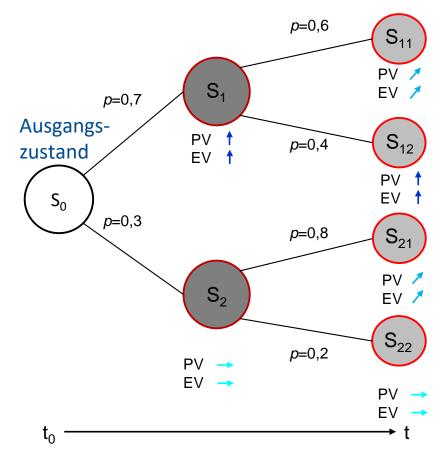
Stand heute (nicht ausschließlich):

- Lastgeprägte Ausbauplanung
- Regelbasierte Konzepte

Probleme:

- Hohe Unsicherheit bzgl.
 zukünftiger Netznutzung von Niederspannungsnetzen (NSN)
- Existierende Verfahren nur auf Netzebene oberhalb NS

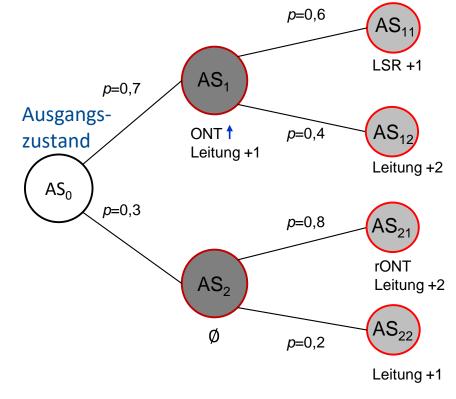
- > Rechnergestützte Ausbauplanung
- Optimierungsmodell:
 vorausschauende Planung mit
 Ableitung von
 Ausbauentscheidungen
- > Adaption für NSN

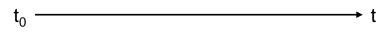

Analyse der Optimierungsaufgabe

Offen im Denken

Unsicherheiten für Planungshorizont von > 30 Jahren

- Netzkunden:
 - Ausbau der Erneuerbaren Energien Anlagen (EE-Anlagen)
 - Entwicklung von Technologien
 - zunehmende Sektorenkopplung
- Netzbetreiber:
 - Einspeisemanagement
 - Lastmanagement
 - Regelbare Betriebsmittel

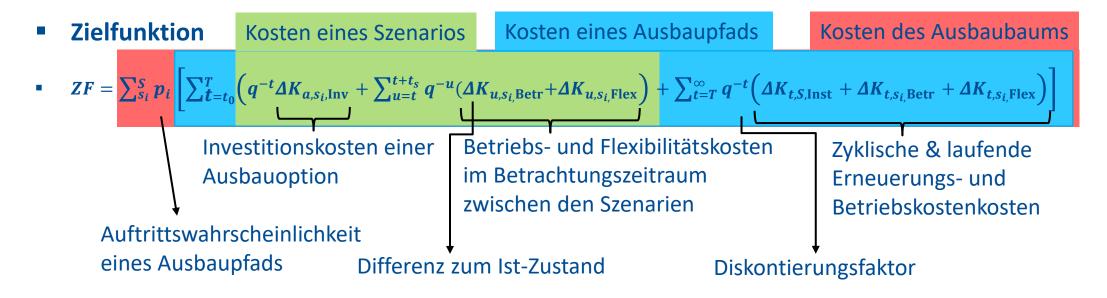

Analyse der Optimierungsaufgabe



Offen im Denken

• Fragestellung:

- konkrete Ausbau- oder ggfls. Flexibilitätsoption auswählen
- Umsetzungszeitpunkt spezifizieren
- ➤ Ableitung konkreter Handlungsempfehlungen
- Zielkonflikte zwischen kurzfristigem Reagieren und robustem Netzausbau



Analyse der Optimierungsaufgabe

Offen im Denken

Nebenbedingungen:

- Maximale Stromtragfähigkeit aller Betriebsmittel des betrachteten NSN
- Spannungsgrenzen nach EN50160

Existierende Optimierungsansätze

Offen im Denken

Zielnetzplanung für Planungshorizont

- Aufstellung von optimalen Zielnetzen für Planungshorizont und Ableitung der Ausbauoptionen
- Kritisch durch Bündelung der Unsicherheiten im Zielnetz
- > Limitierte Betrachtung temporärer Flexibilitätsoptionen in Zielnetz

Unterteilung in Master- und Subproblem

- Masterproblem koordiniert Ausbaumaßnahmen zwischen Szenarienknoten
- Subproblem optimiert in Einzelschritten Szenarienknoten
- > Trennung von übergreifender Koordination und Ausbaumaßnahmenidentifikation
- ➤ Benötigt: Verfahrensansatz, welcher Ausbaumaßnahmen auswählt und gleichzeitig zeitlich koordiniert (Berücksichtigung der Parameter des NSN)

Verfahrensansatz

Offen im Denken

- Optimierungsaufgabe diskret und kombinatorisch
- Genetischer Algorithmus (GA)
 - > Inspiriert durch organische DNA und natürliche Mikroevolution
 - > Vererbung guter und Variation unvorteilhafter Eigenschaften einer Spezies
 - > Eigenschaften in Genen kodiert und in Gensequenz (GS) verknüpft
 - > Lösungsfindung über Operatoren Selektion, Rekombination und Mutation
 - Fitnesswert zur Bewertung der Lösungen

Verfahrensansatz

Offen im Denken

Multi-GS

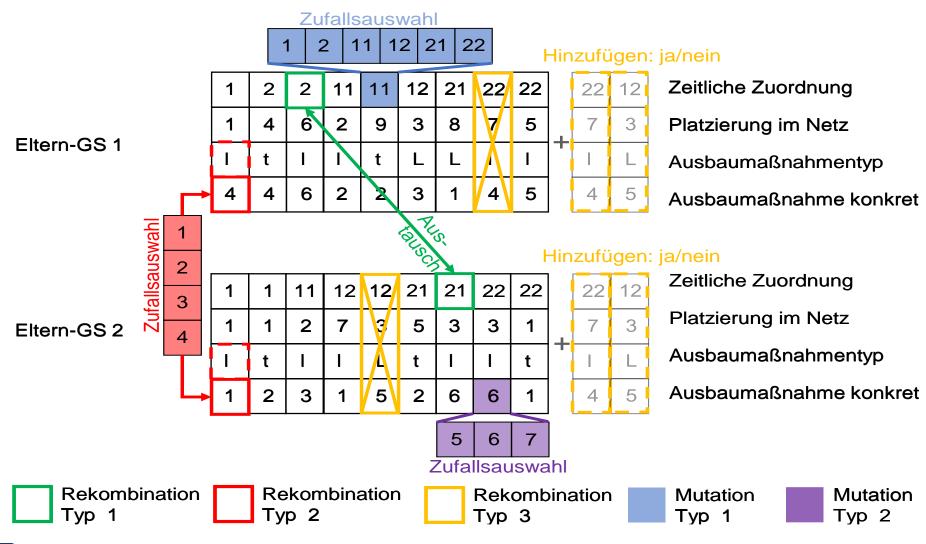
1	2	2	11	11	12	21	22	22
1	4	6	2	9	3	8	7	5
I	t	t	I	t	L	L	I	
1	4	6	2	2	3	1	4	5

Zeitliche Zuordnung

Platzierung im Netz

Ausbaumaßnahmentyp

Ausbaumaßnahme konkret


- In Zeilen die Optimierungsvariable, in Spalte die Ausbauoption
- > Herausforderung:
 - > Abfolge als Informationsträger entfällt
 - ➤ Wie erfolgt der Zugriff der Operatoren für die Erzeugung neuer Lösungen?

Verfahrensansatz

Offen im Denken

Zusammenfassung

 Geschickte Kodierung ermöglicht einstufigen Optimierungsprozess im Anwendungsfall "Ausbauplanung NSN" mit GA

Erfassung der Optimierungsvariablen in vierzeiliger Multi-GS-Struktur

 Abdeckung der Optimierungssituationen durch selektiven Zugriff des Operatoren-Sets

Offen im Denken

Vielen Dank für Ihre Aufmerksamkeit!

