

SIMULATIONSUMGEBUNG ZUR ANALYSE DEZENTRALER STEUERUNG VON VERBRAUCHERN 15.02.2024

ENSURE

Neue EnergieNetzStruktURen für die Energiewende

GEFÖRDERT VOM

KOPERNIKUS Bundesministerium für Bildung und Forschung Die Zukunft unserer Energie

Energiewirtschaftsgesetz

EnWG § 11

"Betreiber […] sind verpflichtet, ein sicheres, zuverlässiges und leistungsfähiges
Energieversorgungsnetz diskriminierungsfrei zu betreiben, zu warten und bedarfsgerecht zu optimieren, zu verstärken und auszubauen, soweit es wirtschaftlich zumutbar ist."

EnWG § 14a

- Bei **Netzengpass** ist VNB berechtigt den **Leistungsbezug** im betroffenen Netzbereich im notwendigen Umfang zu **reduzieren**
- Teilnahme an Maßnahme verpflichtet
- VNB darf Anschluss einer Steuerbaren Verbraucher (Wallbox, Wärmepumpe, ...) nicht verzögern oder ablehnen

Flexible Lasten Intelligent Regeln (FLAIR) Konzept

Zentraler Ansatz

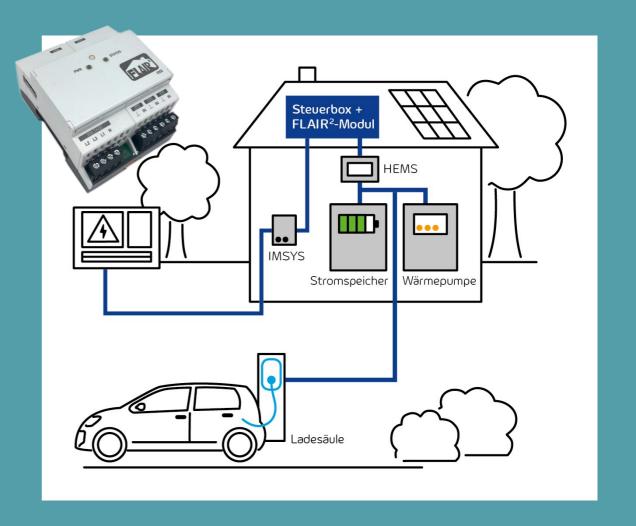
Dezentraler Ansatz

Kommunikationsbedarf?

Hoch

Sehr gering

Berücksichtigung des lokalen Netzzustands?


Nein

Ja

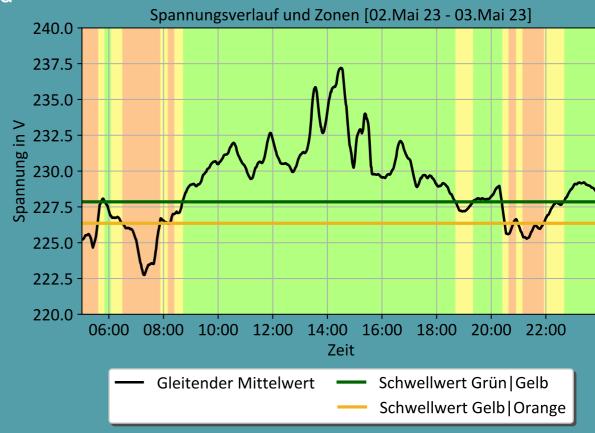
Autarker Betrieb möglich (Fallback-Lösung)?

Nein

Ja

GEFÖRDERT VOM

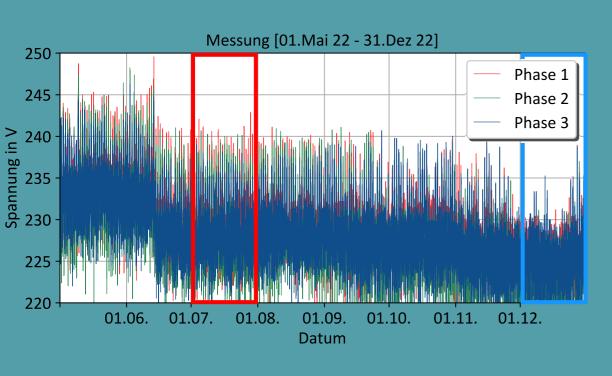
Dezentraler Steuerungsalgorithmus

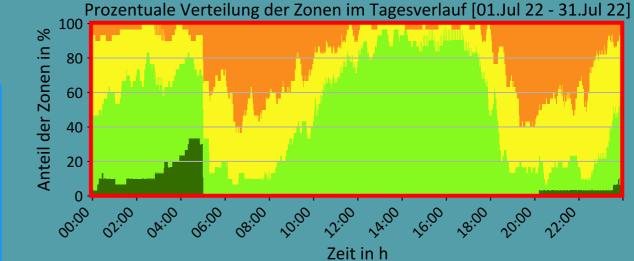

Schwellenwerte unterteilen den Netzzustand

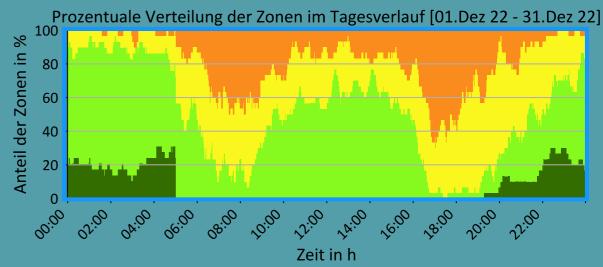
in vier Zonen (••••)

> Unterschiedliche Parametrierung der Schwellenwerteberechnung möglich

Flexible, selbstanpassende Spannungsschwellen:


- Basierend auf historischen Messwerten
- > Individuell für jeden Standort
- Passt sich im Laufe der Zeit an



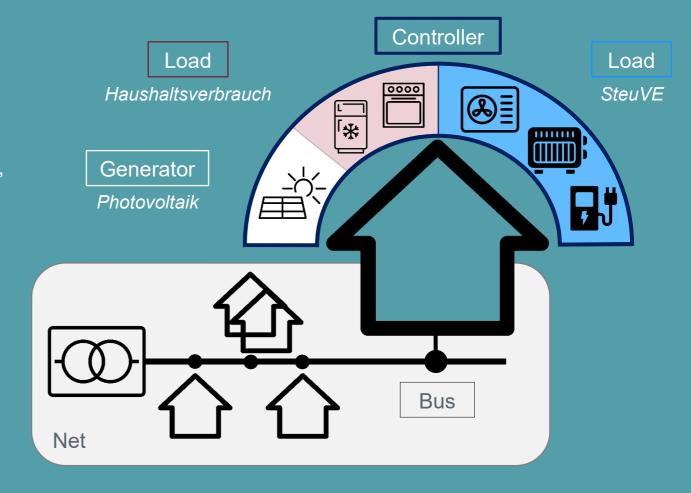


Saisonale Einflüsse auf das Stromnetz im selben Haushalt

GEFÖRDERT VOM

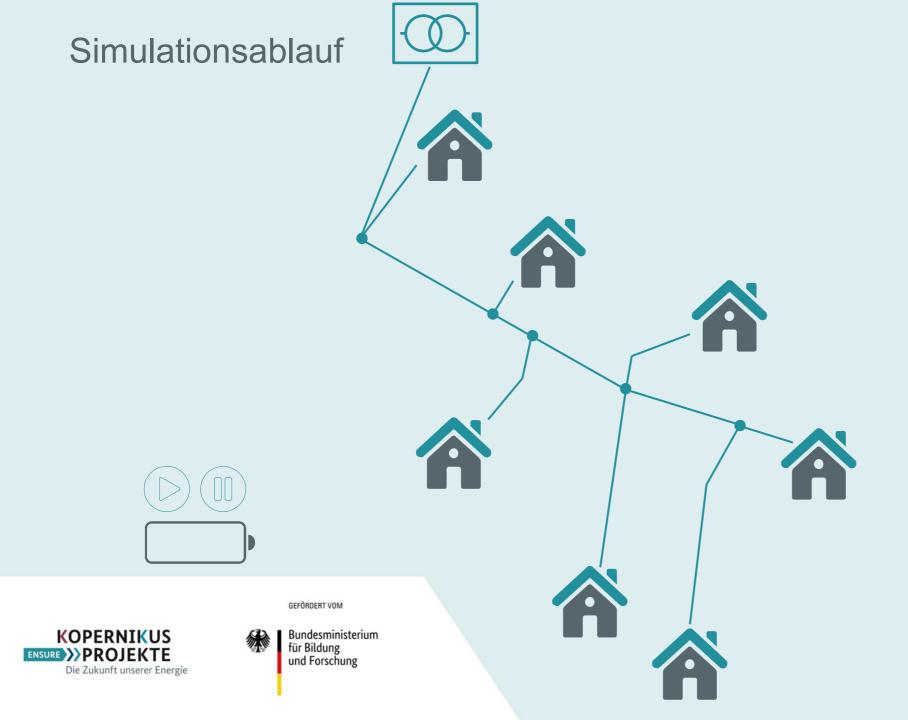
Überblick der Simulationsumgebung

"Pandapower creates an easy-to-use network calculation program aimed at automation of analysis and optimization in power systems."

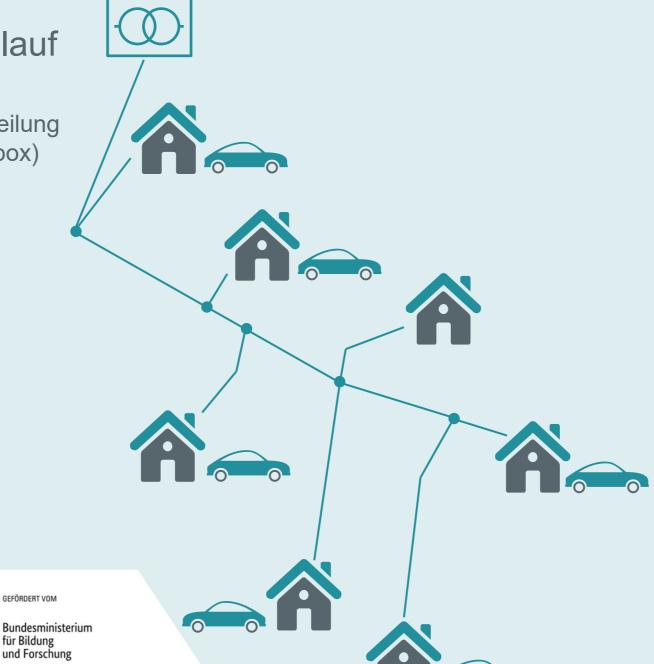

- pandapower

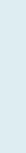
Kern-Elemente aus Pandapower

- > Net: Zentrale Struktur, die Komponenten verbindet und Analyse sowie Anpassungen des elektrischen Systems ermöglicht
- **> Bus:** Verbindungspunkt für elektrische Elemente, essentiell für den Energiefluss
- **> Load:** Abbildung von Verbrauchern zur Simulation von Lastflussverhalten
- **> Generator:** Bereitstellung von Energie, mit festen oder variablen Leistungen
- > Controller: Steuert Netzkomponenten für ein optimiertes Lastmanagement


Zeitreihensimulation

Ja


Simulationsablauf 1. Prozentuale Verteilung der Lasten (Wallbox)



- Prozentuale Verteilung der Lasten (Wallbox)
- 2. Zufällige Verteilung der Lastprofile:

KOPERNIKUS

Die Zukunft unserer Energie

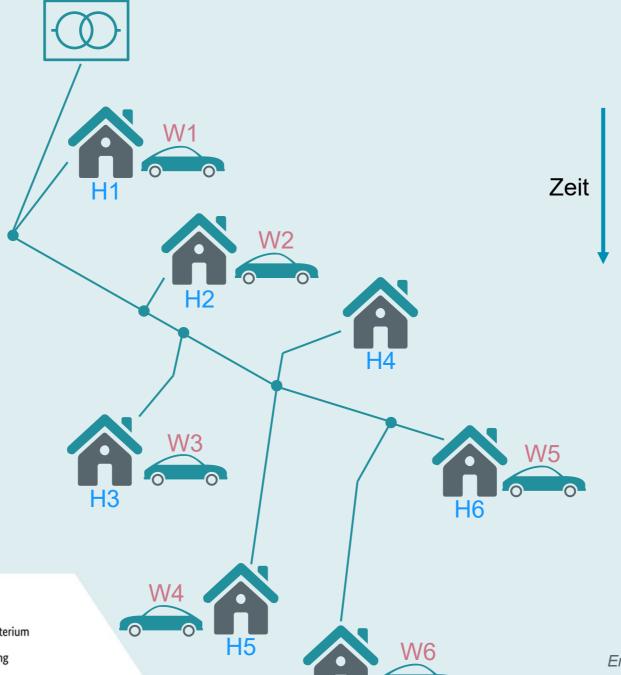
1. Haushalt [HX]

GEFÖRDERT VOM

Lastprofile:

Zeit

H1	H2	Н3	 H7
XX	XX	XX	 XX
xx	XX	XX	 XX
xx	XX	XX	 XX


- Prozentuale Verteilung der Lasten (Wallbox)
- 2. Zufällige Verteilung der Lastprofile:
 - 1. Haushalt [HX]
 - 2. Wallbox [WX]

KOPERNIKUS

Die Zukunft unserer Energie

Lastprofile:

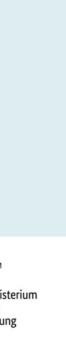
H1	H2	Н3	 H7
XX	XX	XX	 XX
XX	XX	XX	 XX
xx	XX	XX	 XX

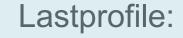
W1	W2	W3		W6
XX	XX	XX	XX	XX
XX	XX	XX	XX	XX
XX	XX	XX	XX	XX

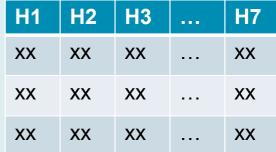
1. Prozentuale Verteilung der Lasten (Wallbox)

2. Zufällige Verteilung der Lastprofile:

1. Haushalt [HX]


2. Wallbox [WX]


3. Verteilung Controller an Haushalte



KOPERNIKUS

Die Zukunft unserer Energie

7 . :4	XX	XX	XX	 XX
Zeit	XX	XX	XX	 XX
	XX	XX	XX	 XX

W1	W2	W3		W6
XX	XX	XX	XX	XX
XX	XX	XX	XX	XX
XX	XX	XX	XX	XX

- Hi

H5

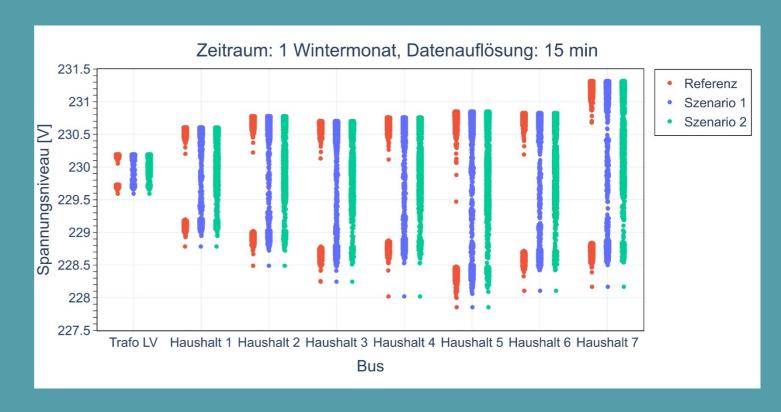
- Prozentuale Verteilung der Lasten (Wallbox)
- 2. Zufällige Verteilung der Lastprofile:
 - 1. Haushalt [HX]
 - 2. Wallbox [WX]
- 3. Verteilung Controller an Haushalte
- 4. Simulation starten

Lastprofile:

H1	H2	Н3	 H7
XX	XX	XX	 XX
XX	XX	XX	 XX
XX	XX	XX	 xx

Zeit

W1	W2	W3		W6
XX	XX	XX	XX	XX
XX	XX	XX	XX	XX
XX	XX	XX	XX	XX

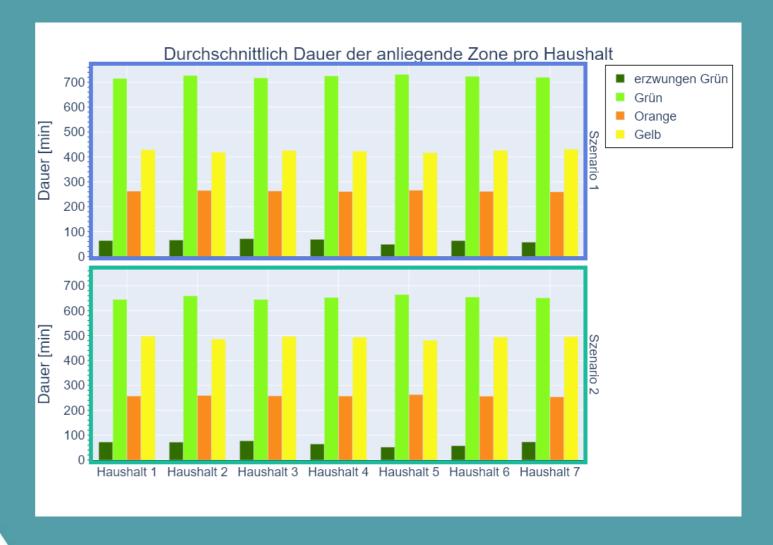

tļi

H5

Spannungsniveau der Haushalte in verschiedenen Steuerungsszenarien

Skalierungswerte für Wallbox:

Zone	Referenz	Szenario 1	Szenario 2
Grün	1	1	1
Gelb	1	1	0,6
Orange	1	0	0,3
Rot	1	0	0



Durchschnittliche Zonendauer der Haushalte in verschiedenen Steuerungsszenarien

Skalierungswerte für Wallbox:

Zone	Referenz	Szenario 1	Szenario 2
Grün	1	1	1
Gelb	1	1	0,6
Orange	1	0	0,3
Rot	1	0	0

Zusammenfassung & Ausblick

- > Ziel: Analyse der **Netzstabilität** und deren **Einfluss** auf Haushalte mittels Simulationsumgebung
- > Lauffähige Simulationsumgebung mit Integration dezentraler Steuerung erstellt
- > Netzrückwirkung bei zukünftigen Ausbauszenarien analysierbar

Nächste Schritte:

- > Integration von Wärmepumpen und Speicherheizungen
- Modellierung der zeitlichen Lastverschiebung bei Verbrauchern
- > Untersuchung externer Einflüsse, wie Veränderungen im Übertragungsnetz und Verbrauch großer Abnehmer

ISES Institut für Nachhaltige Energiesysteme

Hakan Susar

Lothstraße 64 80335 München

hakan.susar@hm.edu

Veronika Barta Lothstraße 64 80335 München

veronika.barta@hm.edu

sites.hm.edu/ises

Stephanie Uhrig

Lothstraße 64 80335 München

stephanie.uhrig@hm.edu

sites.hm.edu/ises

Quellen

[1] Erstellt mit OpenAl's DALL·E 2 Prompt:

Create an image of a power transmission tower with a realistic and modern background. The image should convey a sense of practical innovation in the field of electrical engineering, with a focus on contemporary technology. Include elements like a clear sky, subtle digital overlays like graphs or data streams to suggest the integration of technology in power transmission, and a landscape that merges nature with urban elements. The color palette should be natural with shades of blue, green, and grey, suitable for a professional research conference presentation on simulation environments.

[2] Erstellt mit OpenAl's DALL·E 2 Prompt:

Create a top-down view image that visualizes a simulation environment for a low-voltage power network, specifically designed to represent a pandapower simulation. The image should depict elements such as power lines, substations, and grid components, with an overlay of digital simulation interfaces and data flows. The aesthetic should be clean, technical, and modern, consistent with the style of a strategy game map, illustrating the concept of electrical network analysis and design.

Quellen 2

[3] Erstellt mit OpenAl's DALL·E 2 Prompt:

Create a top-down view image that visualizes the concept of 'Outlook and Summary' for a presentation slide, focusing on the implementation of additional loads and the evaluation of external influences in a low-voltage network simulation. The image should depict a network grid with diverse load icons and external elements like weather or time impacting the grid, symbolizing future expansions and assessments in the simulation environment. The design should be in the same style as previous strategy game-like images, clear and suitable for a professional presentation.

