
Randnetzmodellierung für dynamische Frequenzuntersuchungen im Verteilnetz

Anna Pfendler, Lukas Jung, Jutta Hanson

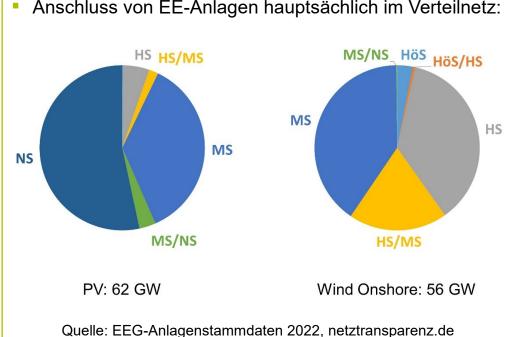
18. Symposium Energieinnovation (EnInnov) 2024 (C2) Regelung in Verteilernetzen

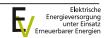
15. Februar 2024

- 1 Einleitung
- 2 Low-Inertia Systeme
- 3 Methodik
- 4 Simulationsergebnisse
- 5 Fazit und Ausblick

Folie 2

- 1 Einleitung
- 2 Low-Inertia Systeme
- 3 Methodik
- 4 Simulationsergebnisse
- 5 Fazit und Ausblick

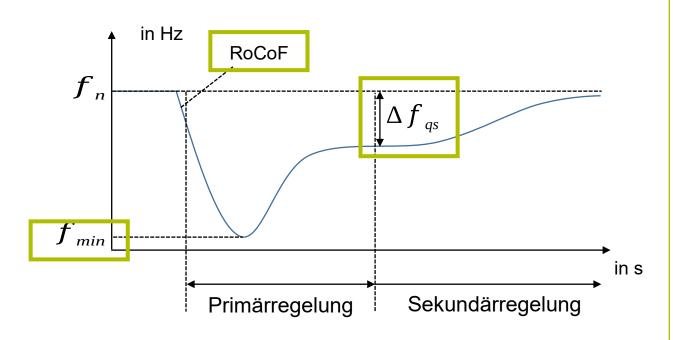

Einleitung


Frequenzstabilität in aktiven Verteilernetzen

Anschluss von EE-Anlagen hauptsächlich im Verteilnetz:

- Aufrechterhaltung des Wirkleistungsgleichgewichts muss zunehmend durch EE-Anlagen erfolgen
- Frequenzuntersuchungen zum dynamischen Verhalten von EE-Anlagen in Verteilernetzen erfordert vereinfachte Modellierung des überlagerten Netzes

Wie kann das Randnetz für dynamische Frequenzuntersuchung im aktiven Verteilernetz vereinfacht nachgebildet werden?


- 1 Einleitung
- 2 Low-Inertia Systeme
- 3 Methodik
- 4 Simulationsergebnisse
- 5 Fazit und Ausblick

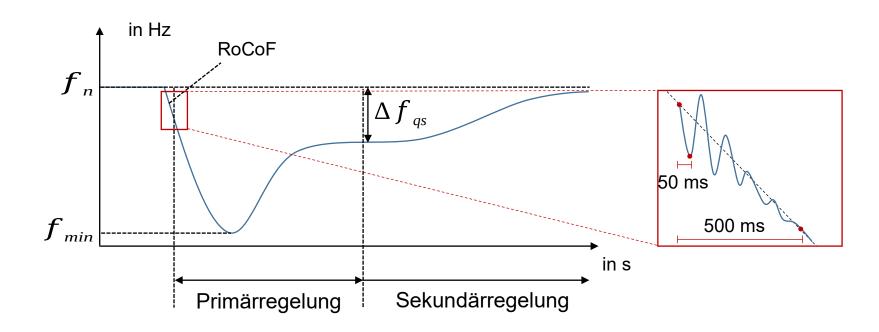
Low-Inertia Systeme

Typischer dynamischer Frequenzverlauf

Frequenzgradient (RoCoF) bestimmt durch das Trägheitsverhalten von

- rotierende Maschinen
- netzbildende Regelungen

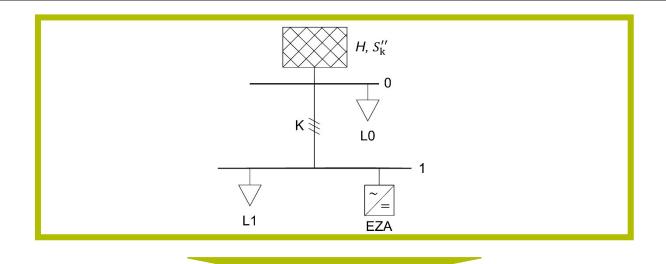
Frequenznadir

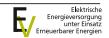

Quasistationäre
Frequenabweichung bestimmt
durch die Primär-regelung von
Erzeugungsanlagen

Low-Inertia Systeme

Typischer dynamischer Frequenzverlauf

Sinkende Trägheit im elektrischen Verbundsystem führt zu schnelleren und stärkeren Frequenzänderungen


- 1 Einleitung
- 2 Low-Inertia Systeme
- 3 Methodik
- 4 Simulationsergebnisse
- 5 Fazit und Ausblick


Methodik

Generische Mittelspannungs-Testbench

- Konzentrierte EZA und Last L1 im Strang
- Vergleich von zwei Varianten des externen Netzes:
- Ward-Äquivalent & aggregierter Synchrongenerator

Methodik

Ward-Äquivalent

Nachbildung des externen Netzes als dreiphasige Spannungsquelle mit Innenimpedanz

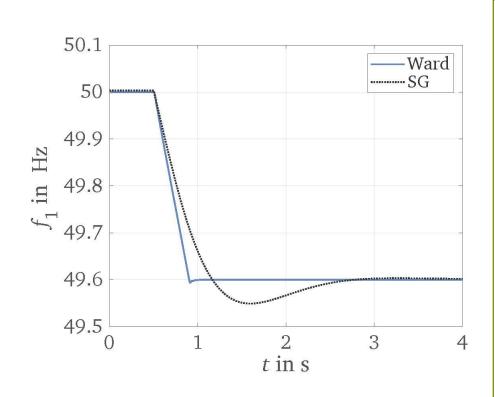
- Frequenzverlauf kann der Spannungsquelle vorgegeben werden
- Impedanz wird wie folgt berechnet

Methodik

Aggregierter Synchrongenerator

Nachbildung des externen Netzes als Synchrongeneratormodell 6. Ordnung inkl. Regelung

- Dynamisches Verhalten inkl. Trägheit, Spannungs- und Frequenzregelung wird modelliert
- Parametrierung anhand von Faustformeln
- Zur Simulation eines Unterfrequenzszenarios erfolgt ein Sollwertsprung der Last L0

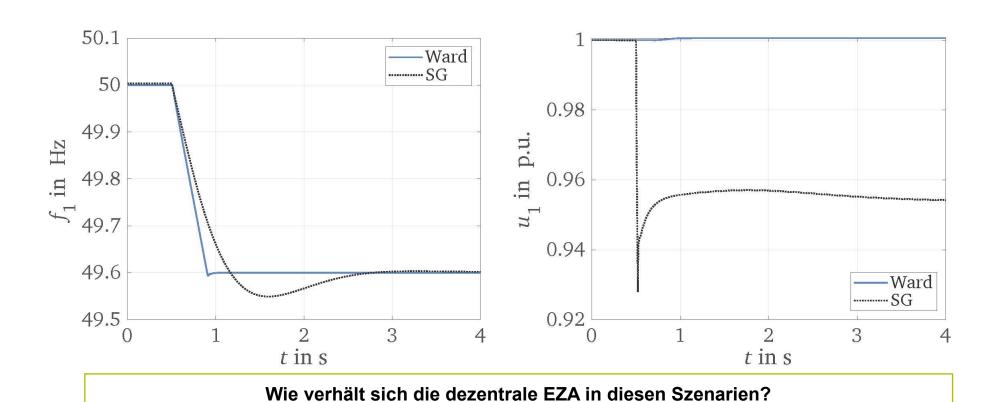


- 1 Einleitung
- 2 Low-Inertia Systeme
- 3 Methodik
- 4 Simulationsergebnisse
- 5 Fazit und Ausblick

Vergleich von Ward Äquivalent und aggregiertem Synchrongenerator

Ward:

- Frequenzrampe mit für 0,4 s
- Kurzschlussleistung


Synchrongenerator:

- Lastsprung
- Kurzschlussleistung
- Trägheit

Folie 14

Vergleich von Ward Äquivalent und aggregiertem Synchrongenerator

Ward:

- Fast Frequency Response (FFR) mit Totband
- Wirkleistungsreaktion proportional zur Frequenzabweichung, da Spannung konstant

Synchrongenerator:

➤ Lastsprung → Spannungssprung

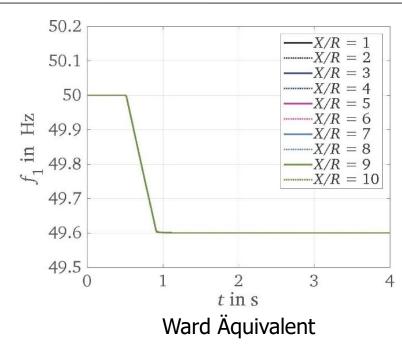
Folie 15

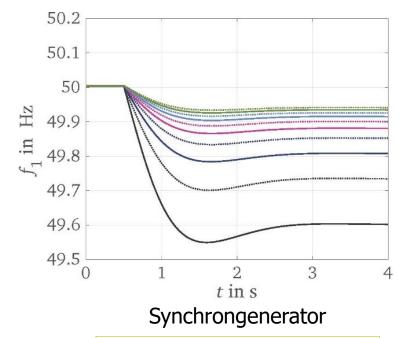
Vergleich von Ward Äquivalent und Synchrongenerator

Zwischenfazit

- Ward-Äquivalent kann beliebige Frequenz vorgeben
- Die Spannung des Ward-Äquivalents ist starr
- Die Wirkleistungseinspeisung der dezentralen EZA folgt proportional der Frequenzabweichung

Sensitivitätsanalyse zur Anwendbarkeit des Ward-Äquivalents


- Variation des X/R Verhältnisses
- Variation der Netzstärke des externen Netzes


Zwischenfazit

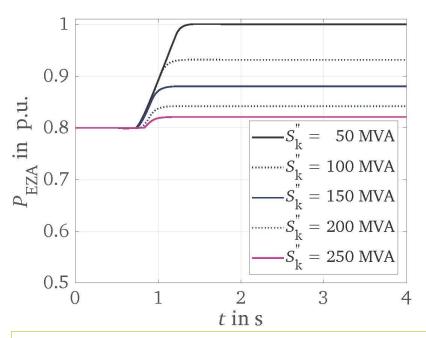
Sensitivitätsanalyse – Variation X/R Verhältnis

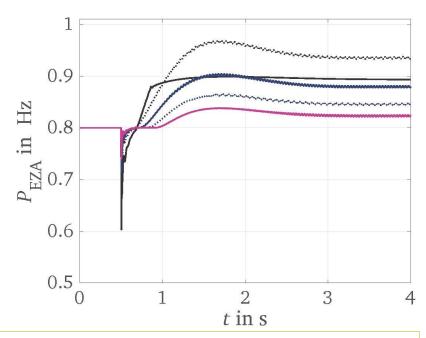
$$\underline{Z}_{i} = \frac{U_{n}^{2}}{S_{k}^{''}} \cdot e^{j \cdot atan(X/R)}$$

$$S_{r,SG} = x_d^{\prime\prime} \cdot \sqrt{1 + \left(\frac{R}{X}\right)^2} \cdot S_k^{\prime\prime}$$

Folie 17

Sensitivitätsanalyse – Variation der Netzstärke





Sensitivitätsanalyse – Variation der Netzstärke Teil 2

- Reglerinteraktion zwischen Synchrongenerator und dezentraler EZA
- Nicht-lineares Verhalten kann nicht durch Ward Äquivalent nachgebildet werden

- 1 Einleitung
- 2 Low-Inertia Systeme
- 3 Methodik
- 4 Simulationsergebnisse
- 5 Fazit und Ausblick

Fazit und Ausblick

TECHNISCHE UNIVERSITÄT DARMSTADT

Randnetzmodellierung für dynamische Frequenzuntersuchungen im Verteilnetz

- Trägheitsverhalten und Primärregelung des Synchrongenerators können nicht mithilfe einer linearen Frequenzrampe nachgebildet werden
- Ward-Äquivalent bildet keinen Spannungseinbruch nach
 - → dynamische Reaktion dezentraler EZA durch das Ward-Äquivalent nicht nachgebildet
- in schwachen Netzen werden die Unterschiede aufgrund der fehlenden Spannungsreaktion größer

Zukünftige Untersuchungen

- Detailliertes Verteilnetz
- Detailliertes überlagertes Netz

Vielen Dank für Ihre Aufmerksamkeit!

Für Fragen stehe ich gerne zur Verfügung.

Anna Pfendler, M.Sc. Wissenschaftliche Mitarbeiterin

Technische Universität Darmstadt Institut Elektrische Energiesystem Fachgebiet Elektrische Energieversorgung unter Einsatz Erneuerbarer Energien (E5)

anna.pfendler@e5.tu-darmstadt.de www.e5.tu-darmstadt.de

