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MOTIVATION - LOAD FORECASTING INTRO
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" Energy forecasting is an important task for various
actors in the energy system:
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" Microgrids and Energy Communities need load forecasts to
economically dispatch flexibilities, to provide ancillary services
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" There is a plethora of methods to forecast load
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MOTIVATION - HOW ARE METHODS TYPICALLY COMPARED?

" Euclidian Error Metrics are widely spread.

Common error metrics are:
* Root mean squared error (RMSE)

* Mean Absolute Percentage Error (MAPE)

= Mean Bias Error

The Problem:

= These statistical metrics are sometimes not relevant
for real system applications

* “Forecasts possess no intrinsic
value, they acquire value through their ability to
influence decisions made by users of the forecasts”
— A.H. Murphy
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where,

N = number of samples
y; = ground truth based on measurement data
Y, = prediction of the forecasting model



WHEN DO EUCLIDIAN
METRICS FAIL?

a b
Double Penalty Effect high RMSE but informative low RMSE but not informative
_ peak timing
Setting: model correctly learns to P — P
predict a peak, but misses the A A
exact timestep t :
Effect: one penalty for = '
underestimating the peak at ‘
timestep t+1 and then another
penalty for overestimating the > t > 1
peak at t+2 t 2 t+H t 2 t++H

(see Haben et al., 2021)
- Forecast == Ground Truth




EXISTING WORK - ECONOMIC EVALUATION OF FORECASTS

* Ranaweera et al. (1997)
* Assessed the economic implications of improved peak load forecasts.

* Implemented forecast errors as a random variable in Monte Carlo simulations.

*  Voss et al. (2020)
* Analyzed forecasts in a Model Predictive Control (MPC) framework for peak load reduction.

* Demonstrated improved results with Local Permutation Invariant k-Nearest Neighbors.

*  Putz et al. (2023) & Houben et al. (2023)
*  Focused on the monetary value of forecasts in an MPC setup for complex energy systems.

* Compared multiple forecasting algorithms; detailed cost savings analysis under various conditions.

* Gokhale et al. (2023)
* Evaluated transfer learning with Temporal Fusion Transformer for household load forecasting.

* Investigated both mean absolute error and operational costs in an MPC framework.



METHODS - NET LOAD ERROR (1)

Goal. Devise an application-driven forecast
metric for grid operators to assess load
forecasts

Background. Grid Operators use load forecasts
to anticipate daily peak load, to procure
balancing service providers (BSPs)

Idea.

"  Stylized Energy System of a Battery Electrical
Storage System (BESS) + Load + Load Forecast +
Daily Demand Charge

" Operated with Model Predictive Control in the
resolution of the forecast

®  Executed once based on the load forecast, and
once on the ground truth

®  The difference is the Net Load Error

p

@ /\Forecasts

-~

bl 2 l

- =
— — 4 ,
Measure

Operational
Peak

t t+l

p ¢ H )

Forecast

—

Act

BESS Parameters
Pricing Scheme

Cost fuj:O:H A
Minimization) — » /L .-"" N0~

Optimal
Peak

t+1

Legend

BESS BESS BESS BESS
a opt. opr. Opr. opt.
(forecast) (forecast) (truth)  (truth)

== Forecasted Load

== Ground Truth Load
=== Optimized Net Load
=== Operational Net Load



METHODS - NET LOAD ERROR (2)
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METHODS - NET LOAD ERROR (3)

H BESS Parameters

P { ’ Pricing Scheme

A Strategy:
Modify the load to reduce peak
opt :
Ij = 1 + u;

t =1
min C°P*(1°P*, Ppc) + V(SOCj=nu) s.t. g(l1°?*, Ppe,0) >0, h(1°Pt, Ppc,0) = 0.
where,

Optimization Problem:

opt __ : . . .
C°P' = demand charge proxy cost for horizon H find optimal charging schedule

u = charging actions uj—o.x
[°Pt = optimized net load l?ito: "
V' = terminal costs, avoiding complete discharge at the final optimization timestep

SOC = state-of-charge of the BESS
Ppc = daily demand charge
0 = BESS parameters



METHODS - NET LOAD ERROR (4)

Objective Function

Horizon peak
Terminal Costs (~Value of Energy)

Important Constraints
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METHODS - NET LOAD ERROR (5)

Control Step: i
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CASE STUDY - DATA & PREPROCESSING

®  QOpen-source load datasets

| Dataset per Spatial Scali|
® 5 Scales to cover full spectrum of

nsumer
consumers Location Resolution Scale
" Cleaned NaNs & Resampled to 1h USA 60min  1-50 GW | County
®  BoxCoxTransform for each dataset Portugal 15min  5-50 MW | Town
[ i .
Encoded datetime: Portugal 15min  50-200 kW | Village
®  Day of week (one-hot)
®  hour of the day (trigonometric) USA 60 min 520 kW | Neighborhood
®  Month of the year USA 60 min  0-2000 W | Building

" Corresponding (measured) outdoor air
temperature data for each dataset
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CASE STUDY - TRAIN TEST SPLIT

" Training Set was one year for all datasets
" Testing Set in another year, manually selected to include extreme weather conditions

" Hyperparameters were optimized on the set of first weeks of each month in the training set

¥l Y2

M1 M3

Training B Hyperparam Opt I Testing
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CASE STUDY - FORECAST EVALUATION

S . Final
|
g > Error
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CASE STUDY - ALGORITHMS

Algorithm Type Mechanism Implementation
RF Decision Tree Ensemble Bagging Direct
XGBoost Decision Tree Ensemble Gradient Boosting Direct
LightGBM  Decision Tree Ensemble Gradient Boosting Direct
GRU Deep Neural Network Memory Gates MIMO
N-BEATS Deep Neural Network Basis Expansion MIMO
TFT Deep Neural Network Attention MIMO

+ Multi-variate Linear Regression as a Benchmark Algorithm
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RESULTS -

Tree-based Models
outperform Neural Networks
on a majority of datasets

Linear Regression
Benchmark work on short
horizons on easy datasets
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RESULTS -

Summers are harder to
forecast than winters

Forecast Skill improves with
increasing horizon

Neural Networks overtake
Tree-based methods for long
horizons

RMSE Skill Score

RMSE Skill Score for County Scale Datasets
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RESULTS - SEASONAL DISTRIBUTIONS

® Explanation of relative low performance in summer:

" Distribution shift:
" Winter = Quasi Normal

" Summer = Asymmetric, long tail
®  Problematic use of BoxCox transform on the whole dataset

®  Possible solutions:
" Train a separate model for each season

®  Use different BoxCox Transforms for sub-datasets
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Net Load Error: Variables for LDWP - TFTModel - 48 Hours Ahead

a)
RESULTS - g
3
ki
S
c)
Top subfigure shows the E
concatenation of j=1 3
forecasts vs ground truth = b)
Mid subfigure shows SOC :
=
based on MPC T
Bottom subfigure shows the B S R
resulting net load $ $ $ $ $ $ $ $ $ $ $
— Ground Truth —— BESS Energy (Ground Truth) —— Operational Net Load (Ground Truth)
---- Load Forecast BESS Energy (Forecast) ---- Operational Net Load (Forecast)

Empirical Validation: Under-predictions lead to increased peak in net load
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RESULTS - NET LOAD ERROR SCORES

Net Load Error (NLE) for County Scale
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CONCLUSION

" Introduced Net Load Error as an Application-Driven Forecast Metric

" Supplement Euclidian metrics to improve model selection process for real-life applications

" Empirical results on 15 datasets

" FEuclidian metrics favor tree-based methods

" NLE results show that neural networks may outperform tree-based methods for peak prediction

" NLE is lower for longer forecasting horizons
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