# Investigating the Prediction of aFRR Activated Volume and Price Using Machine Learning

Claire LAMBRIEX\*, Felix PREUSCHOFF, Denise BANGKELING, Albert MOSER

## 18. Symposium Energieinnovation, 15.02.2024, Graz



## **Background and Motivation**

- Balancing reserves: compensation of short-term imbalances in electricity grid
- Remuneration of standard balancing reserve products aFRR<sup>1</sup> and mFRR<sup>2</sup> contains:
  - Capacity price for reservation of balancing capacity
  - Energy price for the actual provision of energy when activated
- Electricity Balancing Guideline (EB GL): introduction of separate balancing energy market
  - Participation in an energy auction without having been successful in previous capacity auction
  - More short-term trading of balancing energy possible

automatic Frequency Restoration Reserve

manual Frequency Restoration Reserve

- → Introduction of separate balancing energy market for aFRR and mFRR in Germany in November 2020
- Balancing energy market is a new trading opportunity for market participants
- Performance of prediction models used to maximize profits could be influenced by the new market



2

<sup>1</sup>aFRR: <sup>2</sup>mFRR: Goal: Investigate the prediction of aFRR activated volumes and prices in Germany since the introduction of the balancing energy market using machine learning

#### methods

Investigating the Prediction of aFRR Activated Volume and Price Using Machine Learning | Claire Lambriex | 15.02.2024





Balancing Energy Market: Principle  $P_1(C_1)$   $P_2(C_2)$ Balancing capacity market  $\rightarrow$  Award for capacity provision  $P_1(E_1)$ Balancing energy market  $\rightarrow$  Award for energy activation P: Product/ Offer C: Capacity price E: Energy price



## Collection of publicly available data

In 15-minute resolution for May 2021 to April 2023

- Electricity generation
  - Forecasted generation for renewable energy sources (RES)
  - Actual generation for all energy sources
- Electricity consumption (forecasted and actual): total grid load and load from hydro pumped storages
- **Balancing capacity** (positive and negative): procured volumes and capacity prices









## Input data generation (feature engineering)

- Generation ramps: difference between generation at time steps and
- **Consumption ramps**: difference between consumption at time steps and
- **Forecast errors** 
  - RES generation: difference between actual and forecasted generation
  - Consumption: difference between actual and forecasted consumption

#### Input data transformation

Transformation of categorical features

- Hour
- Time of day
- Day of week

Season

Month 



Average hourly activated volume of positive aFRR







## Hyperparameter tuning and model training

- Supervised learning with four target variables: positive and negative aFRR activated volume and price
- Machine learning methods used: Gradient Boosting (GB), Random Forest (RF), XGBoost (XG) and LightGBM (LG)
- Hyperparameter tuning: optimization of certain parameters before the training process using Random Search
- Model training:

5

- Random separation of input data in train and test sets with ratio 80:20
- Evaluation of features' importance to find the optimal number of features
- Investigation of different input data combinations







#### **Model evaluation**

Different input data combinations varying use of actual and forecast values and handling of skewness

| Combination | Generation and consumption data used | Max no. of features | Skewness threshold                         |
|-------------|--------------------------------------|---------------------|--------------------------------------------|
| 1           | Only forecast values                 | 19                  | 1.5                                        |
| 2           | Forecast and actual values           | 59                  | 1.5                                        |
| 3           | Forecast and actual values           | 59                  | 1                                          |
| 4           | Forecast and actual values           | 59                  | No transformation for skewed distributions |

- Identification of best performing method and optimal number of features for each input data combination
- Evaluation of model performance for each combination and target variable by coefficient of determination R<sup>2</sup>





## **Results**

7

Activated volume of aFRR



- Combinations with use of actual generation and consumption data (2-4) perform better than combination without use of actual data (1)
- Best performance by combination 4 with R<sup>2</sup> of 40.0%
- Performance generally not sufficient
- Most important feature for combination 1: RES generation
- Most important features otherwise: hydropower-related



- Combinations with use of actual generation and consumption data (2-4) perform better than combination without use of actual data (1)
- Model performances worse than for positive volume
- Best performance by combination 3 with R<sup>2</sup> of 36.9%
- Most important feature for combination 1: RES generation
- Most important features otherwise: hydropower-related





## **Results**

8

## Energy price of aFRR



- All methods achieve R<sup>2</sup> values of more than 90%
- Best performance by combination 3 with R<sup>2</sup> of 95.8%
- Dominating important features:
  - Capacity price of negative aFRR
  - Volume of positive aFRR capacity procured
- Time-related feature month has an effect as well



- Best performance reached by Random Forest for all combinations
- Best performance by combination 3 with R<sup>2</sup> of 93.5%
- Lower optimal no. of features than for all other target variables
- Most important features differ in all combinations
- → Data transformations influence feature importance





#### **Background and Motivation**

- New balancing energy market for aFRR introduced in Germany in 2020  $\rightarrow$  new trading opportunity for market participants
- Balancing energy market possibly changes the performance of prediction models used to maximize profits
- → Goal: Investigating the prediction of aFRR activated volumes and prices in Germany since the introduction of the balancing energy market using machine learning methods

#### Methodology

Use of different machine learning methods and input data combinations

#### Results

9

- No machine learning method performed best for all target variables and input data combinations
- Models for activated aFRR volume performed poorly
  - Some market parameters changed during the analyzed period (e.g. introduction of the platform PICASSO)
  - If it was predictable, would balancing energy be needed?
- Models for aFRR energy prices performed good  $\rightarrow$  prediction possible with appropriate input data combination and method





## Thank you for your attention!

#### **Claire Lambriex**

RWTH Aachen University Institut für Elektrische Anlagen & Netze, Digitalisierung und Energiewirtschaft Schinkelstraße 6, 52056 Aachen

<u>c.lambriex@iaew.rwth-aachen.de</u> <u>www.iaew.rwth-aachen.de</u>



