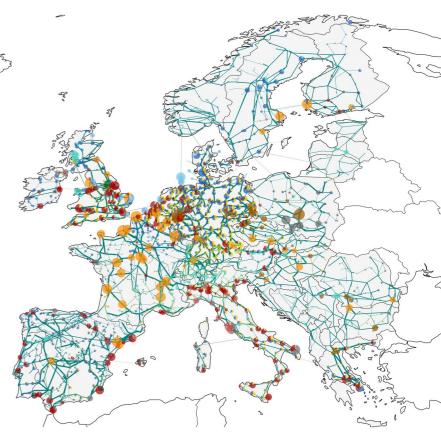

CONSIDERING REACTIVE POWER IN GENERATION EXPANSION PLANNING FOR ENERGY SYSTEM DESIGN

Gereon Recht, Karl-Kiên Cao, Oussama Alaya, Benedikt Jahn, Hendrik Lens

Abstract: Verbesserte Realisierbarkeit des Systems durch Berücksichtigung von Blindleistung?

Übersicht



- 1) Motivation
- 2) Power Flow Approximationen
 - i. Evaluierung der alternativen Approximation
- 3) Versuchsaufbau
 - i. Zusätzliche Annahmen für Blindleistung
- 4) Resultate
- 5) Diskussion und Ausblick
- 6) Zusammenfassung

Motivation: Verbesserte Realisierbarkeit des Systems durch Berücksichtigung von Blindleistung

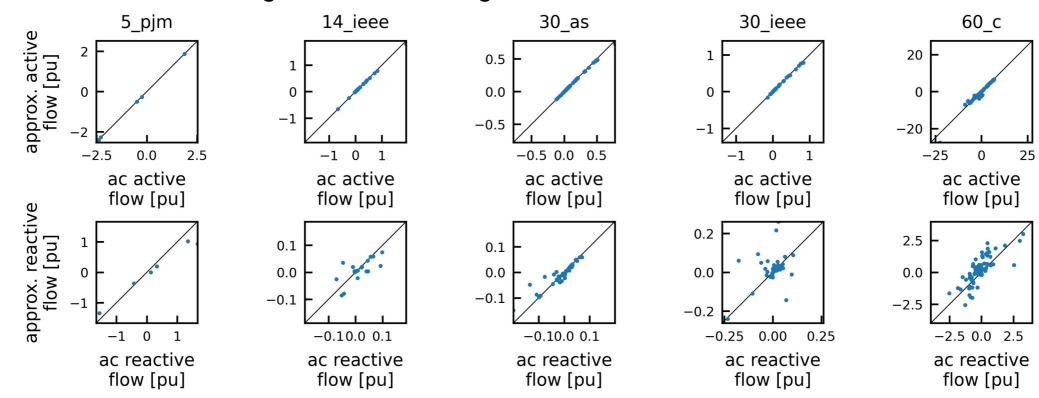
- Energiesystemmodelle sind große
 Optimierungsprobleme
 - Hohe räumliche, zeitliche, und technologische Auflösung
- Subproblem: (Optimal) Power Flow
- AC Power Flow ist NP-schwierig [1]
 - Typisch: Linearisierung durch DC-Approximation [2]
 - Problem: Ignoriert Blindleistung!
- Nachgelagertes Hinzufügen von Blindleistungskapazitäten ggf. teurer
- → Nutzung von alternativer Approximation [3], die auch Blindleistung darstellt.

https://github.com/pypsa/pypsa-eur

Power Flow Approximationen

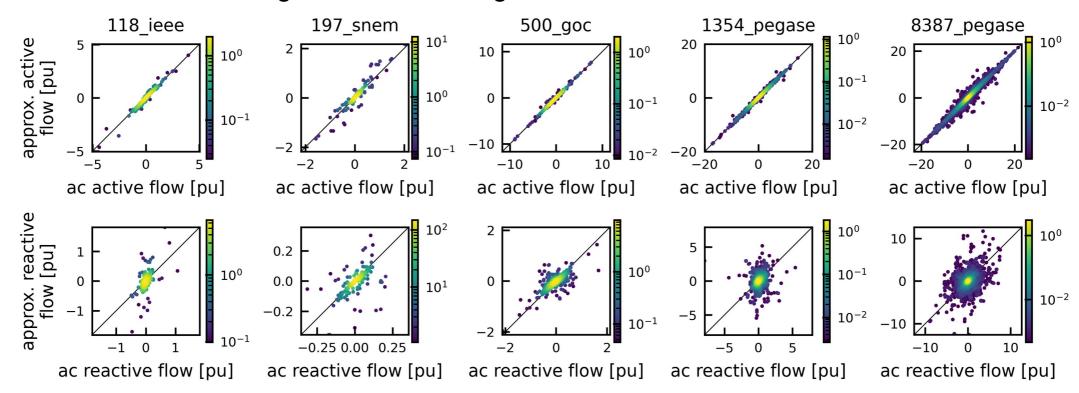
- Admittanz von Leitung :
- Spannungswinkel von Knoten
- Per-unit Spannung von Knoten :
- DC Approximation [2] (**DC**-Modell)
 - Fluss über Leitung von nach

- Linear in
- Flussbeschränkung
 - Linear

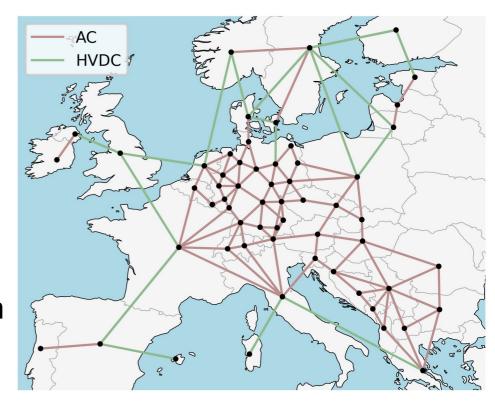

- Alternative Approximation [3] (QP-Modell)
 - Fluss über Leitung von nach

- I inear in
- Flussbeschränkung
 - Konvex quadratisch

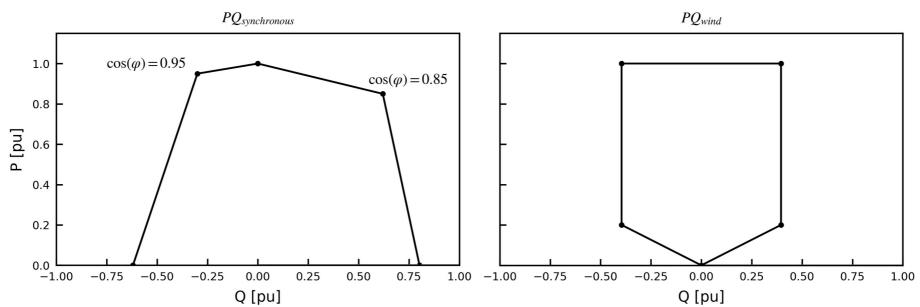
Evaluierung der alternativen Power Flow Approximation


- Vergleich mit AC Power Flow auf Testnetzen aus Power Grid Library [4]
- Gute Übereinstimmung von Wirkleistungsflüssen
- Gute Übereinstimmung von Blindleistungsflüssen auf kleineren Testnetzen

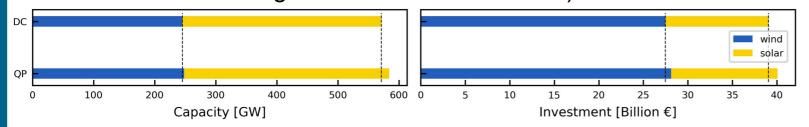
Evaluierung der alternativen Power Flow Approximation

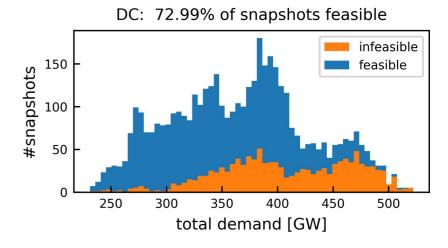

- Vergleich mit AC Power Flow auf Testnetzen aus Power Grid Library [4]
- Gute Übereinstimmung von Wirkleistungsflüssen
- Gute Übereinstimmung von Blindleistungsflüssen auf kleineren Testnetzen

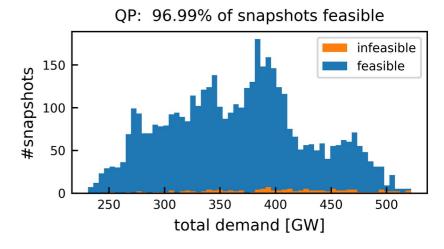
Versuchsaufbau


- Daten: reduziertes PyPSA-Eur [5]
- Generation Expansion Problem (GEP)
 - Konventionelle Erzeugung: Keine Atomkraft in DE
 - Speichersysteme: (Pumped) Hydro, keine Batterien
 - Ausschließlich Ausbau von Wind und Solar
- "DC"-Modell: GEP mit DC Approximation
- "QP"-Modell: GEP mit alternativer Approximation
 - Konvexes quadratisches Programm
- AC-feasibility separat für jeden snapshot
 - Kapazitäten geg. durch Ergebnis von DC-/QP-Modell
 - Kriterium: Konvergenz von Dispatch innerhalb 10.000
 Iterationen von IPOPT [6]

Versuchsaufbau: Blindleistungsannahmen

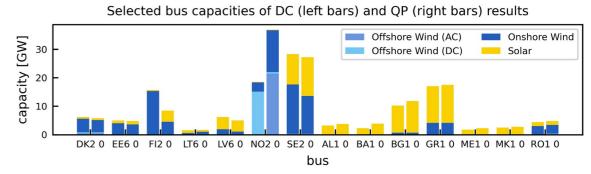

- Lasten: Annahme von Leistungsfaktoren
 - DE-Knoten:
 - Restliche Knoten:
- Erzeugung
 - Approximierte P-Q-Diagramme für Synchronmaschinen und Umrichter von Windturbinen
 - Keine Blindleistungsbereitstellung: Solar, Speichersysteme

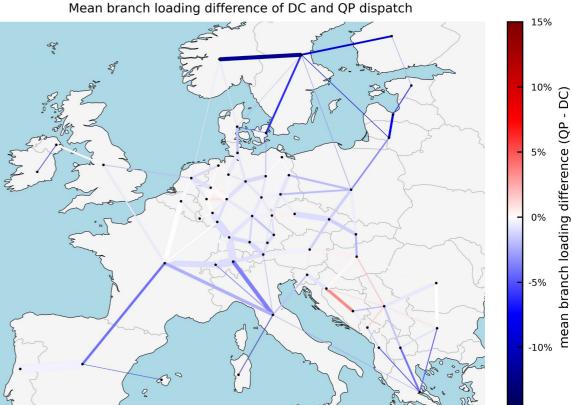



Resultate: Verbesserte AC-Feasibility, höhere Kosten

- DC-Modell: 73% AC-feasible snapshots
 - Hohe Last → hoher Anteil infeasible snapshots
- QP-Modell: 97% AC-feasible snapshots
- Kostenvergleich QP mit DC
 - 1 Mrd. € höhere Kapazitätskosten
 - +3,1 GW wind
 - +10 GW solar
 - 239 Mio. € höhere Betriebskosten (nach Dispatch-Entscheidungen innerhalb der Modelle)

Hypothese: Bessere Berücksichtigung von Netzengpässen




Kapazitäten

- Nordeuropa
 - Norwegen verdoppelt Kapazität
 - Sonst leichte Kapazitätsreduktionen
 - Diversifikation mit Solar zu hohen pro-MWh-Kosten (Finnland, Schweden)
- Südosteuropa
 - Gleichmäßige Erhöhung von Solar-Kapazitäten

Betrieb

- i.A. geringere Leitungsauslastung trotz zusätzlicher Blindstromflüsse (nach Dispatch-Entscheidungen innerhalb der Modelle)
- → Stärkere Auslegung des Systems auf lokale Erzeugung

Diskussion und Ausblick

Diskussion

- Möglich: Verzerrung durch starke räumliche Aggregation
- Speichersysteme könnten AC-Feasibility verbessern
 - Bisher ignoriert: Batteriespeicher, Blindleistung von Speichersystemen
- Dennoch: Bessere Sichtbarkeit von Netzengpässen intuitiv
- Rechenzeit
 - DC-Modell: ~34 min
 - QP-Modell: ~3h30min

Ausblick

- Räumliche und technologische Auflösung erhöhen
- Blindleistungsbereitstellung von Solar, Speichersystemen, Kompensationsanlagen
- Zusätzliche Umrichtertypen
- Statt AC-Feasibility: Optimal AC-Dispatch

Zusammenfassung

- Zwei Generation Expansion Probleme
 - DC-Modell: DC Power Flow Approximation, Blindleistung ignoriert
 - QP-Modell: alternative Power Flow Approximation, Blindleistung berücksichtigt
- QP-Modell verbessert AC-Feasibility
 - DC-Modell: 73% feasible snapshots
 - QP-Modell: 97% feasible snapshots
- Hypothese: bessere Berücksichtigung von Netzengpässen durch Auslegung des Systems auf lokale Erzeugung
 - Erhöhte Gesamtkapazitäten
 - diversifizierte Erzeugung (z.B. mehr Solar im Norden)
 - Höhere Betriebskosten
 - Geringere Leitungsauslastung in Dispatch-Entscheidungen

Literatur

- [1] D. Bienstock and A. Verma, "Strong NP-hardness of AC power flows feasibility," *Operations Research Letters*, vol. 47, no. 6, pp. 494–501, 2019, doi: https://doi.org/10.1016/j.orl.2019.08.009.
- [2] B. Stott, J. Jardim, and O. Alsac, "DC Power Flow Revisited," *IEEE Transactions on Power Systems*, vol. 24, no. 3, pp. 1290–1300, 2009, doi: 10.1109/TPWRS.2009.2021235.
- [3] Z. Yang, H. Zhong, A. Bose, T. Zheng, Q. Xia, and C. Kang, "A Linearized OPF Model With Reactive Power and Voltage Magnitude: A Pathway to Improve the MW-Only DC OPF," *IEEE Transactions on Power Systems*, vol. 33, no. 2, pp. 1734–1745, 2018, doi: 10.1109/TPWRS.2017.2718551.
- [4] S. Babaeinejadsarookolaee et al., "The Power Grid Library for Benchmarking AC Optimal Power Flow Algorithms." 2021. [Online]. Available:

https://doi.org/10.48550/arXiv.1908.02788

Literatur

[5] J. Hörsch, F. Hofmann, D. Schlachtberger, and T. Brown, "PyPSA-Eur: An open optimisation model of the European transmission system," *Energy Strategy Reviews*, vol. 22, pp. 207–215, 2018, doi: https://doi.org/10.1016/j.esr.2018.08.012.

[6] J. Nocedal, A. Wächter, and R. A. Waltz, "Adaptive Barrier Update Strategies for Nonlinear Interior Methods," *SIAM Journal on Optimization*, vol. 19, no. 4, pp. 1674–1693, 2009, doi: 10.1137/060649513.

Impressum

Thema: Considering reactive power in generation expansion

planning for energy system design

Datum: 2024-02-15

Autor: Gereon Recht

Institut: Vernetzte Energiesysteme

Bildquellen: Alle Bilder "DLR (CC BY-NC-ND 3.0)",

sofern nicht anders angegeben