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Abstract: Energy flexibility in industrial systems helps maintain system stability and reduces 

production costs at the same time. Industrial consumers must schedule their energy flexibility 

in advance for maximum cost reduction. It is crucial to understand the economic risks 

associated with scheduling energy flexibility. The paper proposes a daily decision model for 

industrial energy flexibility, incorporating the Conditional Value-at-Risk to address economic 

risks. The results demonstrate that the daily decision model supports industrial companies in 

scheduling energy flexibility based on their risk appetite for the following day. It provides a 

compromise between risk-taking behaviour, offering high cost reduction but high risk, and risk-

averse behaviour, providing low risk but limited cost reduction. Additionally, the study shows 

that normal, t-location-scale, and lognormal distribution functions for energy prices modelling 

generate minor differences in the decision model’s results.  

Keywords: Industrial energy flexibility, day-ahead scheduling, stochastic optimization, 

conditional value-at-risk (CVaR) 

1 Introduction 

Integrating renewable energy generation poses challenges to electricity system management 

[1]. Additional flexibility on the demand side is required to guarantee the balance between 

generation and demand [2]. In addition, the increased and more volatile electricity prices 

experienced in Europe since 2022 are causing higher energy costs for industrial companies 

that have to decide on their production and investment plans facing unpredictable production 

costs development [3]. Industrial energy flexibility (EF) can help the energy system to maintain 
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stability [4]. Moreover, it contributes to reducing production costs and to the industrial sector’s 

competitiveness [2]. The energy flexibility measures (EFMs) are scheduled one day in advance 

to exploit the potential for energy cost reduction and combine it with production planning [5, 6]. 

EFMs model industrial EF through standard parameters, such as maximum power, activation 

time, and specific costs [5, 6]. Scheduling in advance brings uncertainties for decision-making 

and, thus, corresponding economic risks [7]. Understanding risks is crucial for industrial 

companies as they must be aware of potential losses when taking decisions [7]. The 

Conditional value-at-risk (CVaR) is a risk measure representing the average losses after a 

defined confidence level and can be included in linear programming for optimal decision- 

making [8]. The CVaR needs probabilistic forecasts of uncertain variables as input and is 

sensitive to scenarios modelling coming from distribution functions [9]. Another risk measure 

is the Value-at-risk (VaR), which represents the losses at a confidence level and corresponds 

to the lower bound of the CVaR at the same confidence level [9]. However, the CVaR is 

superior to the VaR, which stems from factors such as the possibility of integrating it into 

optimization functions and its ability to consider scenarios beyond the confidence level [8]. 

Previous work showed the potential of the CVaR combined with the scheduling of energy 

flexibility [7]. However, the optimization was not carried out for the entire day and a local 

minimum was being targeted.  

This paper proposes a decision model for energy flexibility scheduling considering potential 

economic losses. The optimization considers the one day and includes two parts. The first part 

of the optimization function considers the cost variation, while the second part corresponds to 

the CVaR. A similar integration of the CVaR in decision-making approaches for energy 

scheduling and managing economic risk at the same time has been proposed in literature [10-

13]. However, EF modelling by means of EFM, as in [5], was not considered in previous works, 

thus lacking a general description for managing and using industrial energy flexibility. In 

addition, this paper assesses the impact of different distribution functions for electricity prices 

on the proposed daily decision model. The goal is to investigate how large the difference 

caused by different price distribution functions is. The characteristic parameters of the chosen 

distribution functions were defined based on historical data. This paper is organised as follows. 

In Section 1, the context and previous works are introduced. Section 2 describes the decision 

model, and the results over one day are shown. In Section 3, the effect of price distribution 

functions on the decision model´s results is evaluated and discussed. Section 4 presents the 

conclusions and an outlook for future research.   

2 Energy Flexibility Decision Model  

In this section, the energy flexibility decision model is introduced. It is based on the one 

proposed in [7] and uses mixed-integer linear programming (MILP) stochastic optimization to 

minimize the industrial company’s daily electricity costs. The risk is considered in the 

optimization through the risk measure CVaR. Prices are included as probabilistic scenarios  

extrapolated from cumulative distribution functions based on historical data. The main novelty 

of this decision model is the optimization over one day and not for each time step separately, 

aiming at the minimum global daily costs. Moreover, only the energy cost reduction is aimed, 

not the trading on different markets [7]. The decision model is described in the first part of this 

section. The second part presents and discusses the results.    
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2.1 Method Description 

The optimization goal aims at minimizing the total cost variation resulting from the minimization 

function in eq. 1. This optimization is carried out considering the time steps t, which belongs to 

the evaluated entire day 𝑑: 𝑡 = 1 … 𝑇, 𝑡 ∈ 𝑑.  

min[𝜔𝐸(𝐶𝑉𝑑(𝐸𝐹𝑀)) + (1 − 𝜔)𝐶𝑉𝑎𝑅𝛼,𝑑(𝐸𝐹𝑀)]               (1) 

The first term in eq. 1 is the expected cost variation over one day (𝐶𝑉𝑑(𝐸𝐹𝑀)), achievable 

through the EFM scheduling (eq. 2): 

𝐸(𝐶𝑉𝑑(𝐸𝐹𝑀)) = ∑ 𝜌𝜉 [∑ ∑ 𝐸𝐸𝐹𝑀𝑖
𝑡  (𝐶𝐷𝐴𝑀,𝜉

𝑡 + 𝐶𝐺𝐶𝐸𝑛𝑒𝑟𝑔𝑦
+ 𝐶𝐸𝐹𝑀𝑖

𝑡 )𝑡𝑖 ]𝜉          (2) 

The cost variation includes hourly prices 𝐶𝐷𝐴𝑀,𝜉
𝑡 , the energy cost component of the grid charges 

𝐶𝐺𝐶𝐸𝑛𝑒𝑟𝑔𝑦
, and EFM-specific activation costs 𝐶𝐸𝐹𝑀𝑖

𝑡  [6]. Hourly prices for the following day are 

defined through scenarios with the respective probability 𝜌𝜉 , ∀𝜉 = 1 … Ξ. The cost variation 

considers energy  𝐸𝐸𝐹𝑀𝑖
𝑡 , ∀𝑖 = 1 … 𝑛 of the 𝑖 − 𝑡ℎ EFM at each time step 𝑡 of the considered 

day. The use of the EF is profitable if, e.g., the EFM activation costs for reducing the load 

during price peaks are less than the corresponding achieved cost. 

Optimization variables are subject to system boundary constraints (eq. 3), i.e., constraints 

related to the maximum energy peak over 15 minutes at a grid connection point 𝐸𝑚𝑎𝑥, and 

EFM power limit constraints, i.e., the limit on the EFM maximum and minimum power for each 

time step t (eq. 4). Both constraints are inequality constraints expressed as energy constraints 

considering the average power over 15 minutes, 𝐸15min  = 𝑃15min
̅̅ ̅̅ ̅̅ ̅̅ 4⁄ . 

∑ 𝐸𝐸𝐹𝑀𝑖
𝑡𝑛

𝑖=1 + 𝐸𝑙𝑜𝑎𝑑
𝑡 ≤ 𝐸𝑚𝑎𝑥           (3) 

𝐸𝐸𝐹𝑀𝑖,𝑚𝑖𝑛
𝑡 ≤ 𝐸𝐸𝐹𝑀𝑖

𝑡 ≤ 𝐸𝐸𝐹𝑀𝑖,𝑚𝑎𝑥
𝑡            (4) 

For EFMs with storage behaviour, additional constraint on the State of Charge (SoC) limit (eq. 

5) and end value constraint (eq. 6) are defined, the last being an equality constraint. Each 𝑆𝑜𝐶𝑗
𝑡 

is computed using the energy of the EFMs that model the load increase and load decrease of 

a storage system, ∀ 𝑗 = 1 … 𝑛𝐸𝑆𝑆.  

𝑆𝑜𝐶𝑗,𝑚𝑖𝑛
𝑡 ≤ 𝑆𝑜𝐶𝑗

𝑡 ≤ 𝑆𝑜𝐶𝑗,𝑚𝑎𝑥
𝑡              (5) 

𝑆𝑜𝐶𝑗
𝑇 = 𝑆𝑜𝐶𝑗

𝑒𝑛𝑑            (6) 

The second term in eq.1 is the risk measure CVaR in the linearized form as in [7, 11] (eq. 7), 

which is subject to additional constraints on additional variables 𝜏𝑑 and 𝜅𝜉,𝑑  (eq. 8). 

𝐶𝑉𝑎𝑅𝛼,𝑑(𝐸𝐹𝑀) = 𝜏𝑑 +
1

1−𝛼
∑ 𝜌𝜉  𝜅𝜉,𝑑 𝜉         (7) 

𝜅𝜉,𝑑 ≥ 0 ;  𝜅𝜉,𝑑 ≥ 𝐶𝑉𝜉,𝑑(𝐸𝐹𝑀) − 𝜏𝑑        (8) 

The confidence level 𝛼 is used to define which results are considered for the evaluation of risk, 

i.e., the cost variation with a probability of occurrence higher than (1 − 𝛼)% [14]. The 

company´s risk appetite, i.e., willingness to risk for achieving high cost reduction, is modelled 

through 𝜔 ∈ [0,1]. Choosing a high value of 𝜔 prioritizes cost variation, thus for a risk-taking 

approach, while a 𝜔 close to zero focuses on reducing risk for a risk-averse approach [7]. 
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2.2 Use Case and Results 

The industrial facility of the use case includes EFMs of an energy storage system (ESS), 

charging stations for electric vehicles of employees (EV), and a compressed air storage system 

(CA) (Table 1). ESS, EV, and CA can cause a temporary load reduction or load increase at 

the grid connection point. A load reduction measure corresponds to discharging the storage 

system, thus decreasing the corresponding SoC (EFM1, EFM3, and EFM5). A load increase 

measure corresponds to the charging phase, which increases the corresponding SoC (EFM2, 

EFM4, and EFM6). Specific activation costs are input for the decision model and are defined 

from the method proposed by Tristan et al. [15], excluding investment costs. ESS and CA can 

be planned at any time, while EV has limited validity. It is assumed that a company´s 

employees use charging stations to charge their EV from 30% to 90% SoC at the end of the 

working day. For ESS and CA, the SoC end of the day equals the SoC at the beginning. 

Price scenarios are calculated for typical seasonal weekdays and weekend-days [11, 16] using 

hourly day-ahead market prices [17]. Prices are assumed seasonal and normally distributed 

[18]. The decision model uses seven price scenarios extrapolated from the defined normal 

distribution functions (Ξ = 7), as in Figure 1.b. Figure 1.a shows an extract of the results of 

one autumn weekday for a risk-averse (𝜔 = 0.2) and a risk-taking approach (𝜔 = 0.9) and 

confidence level α of 0.9.  

The risk-taking approach prioritizes the results of the stochastic optimization, choosing to 

schedule an ESS load increase at 4 a.m. (39.6 €/MWh). This does not correspond to the 

minimum average forecasted price (in Figure 1: sc. 4) of the first part of the day, which happens 

at 3 a.m., however, it corresponds to a lower price variance than at 3 a.m.. The risk-averse 

approach takes more into account the economic risk associated with the scenarios with high 

prices (In Figure 1: sc. 6 and 7) and thus schedules the same ESS load increase at 5 a.m., 

when not only the average forecasted price is low (40.0 €/MWh) but also the high price 

scenarios (up to 55.5 €/MWh). The risk-taking approach schedules ESS, CA, and EV load 

decreases at 9 a.m., corresponding to the maximum average forecasted price of the day (48.6 

€/MWh). In addition, it schedules an EV load increase at 7 a.m. to enable a higher load 

Table 1: Description and parameters of the use case´s energy flexibility measures (EFM) [5-6, 15]. 

EFM number Flex. 

unit 

Direction Flex. 

power 

[kW] 

Duration 

time [h] 

Specific 

activation 

costs 

[ct€/kWh] 

Validity 

EFM1 (charge) 

EFM2 

(discharge) 

ESS load shift (↕) 0 - 160 SoC 

dependent 

0.33 always 

EFM3 (charge) 

EFM4 

(discharge) 

EV load shift (↕) 0 - 45 SoC 

dependent 

0.17 weekdays  

7 a.m.-5 p.m. 

EFM5 (charge) 

EFM6 

(discharge) 

CA load shift (↕) 0 - 30 SoC 

dependent 

0.44 always 
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reduction at 9 a.m.. The risk-averse approach compromises between the peak of the average 

forecasted price and the high price scenarios (63.1 €/MWh at 8 a.m. and 62.9 €/MWh at 9 

a.m.). Therefore, it splits ESS load decrease between 8 and 9 a.m. and shifts to 8 a.m. the 

ones of EV and CA. Moreover, the EV load increase at 7 a.m. is not scheduled. This divergent 

behaviour is due to the different price gap between the time of the load decrease and the price 

at 7 a.m. considered by the approaches: the risk-taking sees a difference of up to 5 €/MWh 

between the peak price at 9 a.m. and the price at 7 a.m., while the risk-averse approach sees 

a difference of 3.2 €/MWh in the high prices scenario. This makes the additional activation at 

7 a.m. not convenient for the risk-averse approach. The risk-taking approach plans EV 

charging at 2 p.m.. As before, this hour does not correspond to the lowest price between 7 

a.m. and 5 p.m., which happens at 3 p.m.. However, the variance is lower then at 3 p.m. and 

the high price scenarios present lower prices. The risk-averse approach schedules of the EV 

load increase at 1 p.m.. This is due to the price minimum for high price scenarios at 1 p.m. 

compared to prices at 2 p.m.. However, the scheduled energy is higher than the one scheduled 

by the risk-taking approach, enabling an EV load decrease at 4 p.m.. At this hour, the high 

price scenarios show a peak, which could cause high prices for the industrial company, and 

thus, the risk-averse approach prefers to schedule a load decrease at this time. Finally, a load 

increase for ESS and CA are scheduled by both approaches at 11 p.m., when the average 

price scenario and the high price scenarios reach the daily minimum. The EV is not available 

anymore and thus is not scheduled.  

 

Figure 1: Results of the decision model for energy flexibility on a typical autumn day for risk-averse (𝜔 = 0.2) 

and risk-taking (𝜔 = 0.9) approach at confidence level 𝛼 = 0.9: hourly EFM scheduling (top, a, line: risk-taking; 
dashed line: risk-averse) and corresponding price scenarios (bottom, b). 
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Results in Figure 1 shows that a risk-taking approach considers all the scenarios and takes 

scheduling decisions according to the expected cost variation based on stochastic 

optimization. A risk-averse approach prioritizes the risk component and takes the EFM 

scheduling decision also considering the scenarios with high prices.  

Figure 2.a shows the results of the total cost variation (eq.1) for different values of risk appetite 

𝜔. The case of 𝜔 = 1 corresponds to an optimum of the expected cost variation without 

considering risk. It is the maximum cost variation (most negative value), which can be reached 

with the forecasted prices and equals the results obtained by the deterministic equivalent of 

the optimization, represented by the horizontal line in Figure 2.a. For 𝜔 values close to one, 

the total cost variation remains in absolute value high, but less than the optimum at 𝜔 = 1 due 

to the fact that the model considers the economic risk, and progressively reduces for lower 

values of omega towards a risk-averse approach. The minimum total cost variation in absolute 

value is reached for 𝜔 = 0, which represents only the risk measure CVaR. Figure 2.b shows 

the cost variation and CVaR values for the same day. The cost variation is equivalent to the 

electricity cost reduction, which is computed considering the electricity costs and the energy 

cost of the grid charges, including the EFM activation costs (eq. 2). The CVaR corresponds to 

the results of eq. 7. Figure 2.b shows that the economic risk (CVaR) increases if the cost 

reduction is higher in absolute value. This happens for ω values closer to one. The CVaR range 

is larger than the one for the cost variation, being 4.5 € and 0.3 €, respectively, showing that 

the risk increases faster than the possible cost reduction. In Figure 2.b,the role of confidence 

level α is also visible. A low value of α means that the optimization problem considers more 

price scenarios for calculating CVaR. Since the CVaR is the average of economic risk at a  

confidence level, the CVaR for a low confidence level is also lower. However, it does not 

represent a lower economic risk. An interesting result can be deduced from Figure 2. For low 

 

Figure 2: Results of the total cost variation as in eq.1 (top, a), cost variation and CVaR as in eq. 2 and eq.7 
respectively (bottom, b) for different values of confidence level α. 
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𝜔 values, the CVaR assumes negative values. This means that the EFM scheduling of a risk-

averse approach could bring a negative cost variation. This is possible due to the highest price 

scenarios, which show that a significant difference between hours of the day and the EFM 

scheduling of the risk-averse approach can support reducing costs as well. 

3 Price Distribution Function Evaluation 

In this section, the results of different price distribution functions are compared. The goal is to 

evaluate how modelling the forecasted electricity prices with different distribution functions 

affects the results of the energy flexibility decision model described in Section 3. The first part 

contains the evaluation approach’s description, and the second part discusses the results.  

3.1 Evaluation Approach 

The approach proposed r to evaluate the decision model´s results considering different price 

distribution functions is here briefly described. First, historical data are used to define the 

distribution function parameters, or forecast characteristics, for each distribution function type 

considered in this paper (Table 2). Distribution function types are normal distribution, t-location-

scale (t-scale) distribution, lognormal distribution, and gamma distribution [19]. For example, 

Figure 3 shows the named distribution functions as probability density functions fitted for the 

prices between 8-9 a.m. of a workday. Afterwards, price scenarios are extrapolated and used 

as input for the decision model using multiple 𝛼 and 𝜔 

(𝛼 𝜖 [0,6; 0,7; 0,8; 0,9; 0,99], 𝜔 𝜖 [0; 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9; 1]), and results are 

stored. In the last step, results obtained with normal distribution are compared to the ones 

obtained with the other distributions 𝜁. The comparison is based on the daily cost variation 

difference between one distribution 𝜁 and the normal distribution and the hourly EFM energy 

difference scheduled by the optimization (eq. 11-12). The values are expressed respectively 

as percentage of the average daily energy costs, including grid charges, and the maximum 

EFM energy that can be scheduled during one hour. 

Table 2: Distribution function types used for modelling price probabilistic forecasts and their descriptive 
parameters [19]. 

Parameter 

for each 

time step t  

Normal 

distribution 

T-location-scale  

distribution 

Lognormal 

distribution 

Gamma 

distribution 

Form Symmetric Symmetric Left-skewed Right or left-

skewed 

Probability 

density 

function 

(PDF) 

1

√2𝜋𝜎
𝑒

−
(𝑥−𝑦)2

2𝜎2  Γ (
𝜈 + 1

2
)

𝜎√𝜈𝜋Γ (
𝜈
2

)
[
𝜈 + (

𝑥 − 𝜇
𝜎

)
2

𝜈
]

−(
𝜈+1

2 )

 

1

2𝜋𝜎𝑥
𝑒

(−
(ln(𝑥)−𝜇)2

2𝜎2  
𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥 

Parameter Location 

parameter µ 

Scale 

parameter 𝜎 

Location parameter  

Scale parameter  

Shape parameter  

Gamma function  

Scale parameter µ 

Shape parameter 

𝜎 

Location/shape 

parameter 𝛼 

Scale 

parameter 𝛽 
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∆𝐶𝑉𝑑
𝜁% =

𝐶𝑉𝑑
𝜁−𝐶𝑉𝑑

𝑁𝑜𝑟𝑚𝑎𝑙

𝑚𝑖𝑛(𝐶𝑉𝑑
𝑁𝑜𝑟𝑚𝑎𝑙)

∗ 100       (11) 

∆𝐸𝐹𝑀ℎ
𝑒𝑛𝑒𝑟𝑔𝑦,𝜁% =

𝐸𝐹𝑀ℎ
𝑒𝑛𝑒𝑟𝑔𝑦,𝜁−𝐸𝐹𝑀ℎ

𝑒𝑛𝑒𝑟𝑔𝑦,𝑁𝑜𝑟𝑚𝑎𝑙

max (∑ 𝐸𝐸𝐹𝑀𝑖
ℎ

𝑖 )
∗ 100    (12) 

3.2 Results Discussion 

Tables 3 and 4 summarize the comparison results considering the risk-taking approach of 

Section 2. Table 3 shows the maximum, mean absolute error (MAE), minimum, and standard 

deviation of cost variation difference ∆𝐶𝑉𝑑
𝜁% between each distribution function 𝜁 and the 

normal distribution, while Table 4 presents results related to hourly EFM energy difference 

∆𝐸𝐹𝑀ℎ
𝑒𝑛𝑒𝑟𝑔𝑦,𝜁%. Table 3 shows that modelling prices with t-scale distribution gives 

comparable results to the modelling with normal distribution. Values of maximum, MAE, and 

standard deviation of ∆𝐶𝑉𝑑
𝜁% are less than 1% of the highest cost variation in absolute value 

reached with normal distribution, and only minimum value is over -3,5%. The lognormal 

distribution also gives comparable results, even if the minimum value is lower than -6.3% and 

the MAE is higher. However, the maximum value and maximum standard deviation decrease 

compared to the normal distribution. Gamma distribution shows comparable results to the 

normal distribution, as for the other two distributions. This means that the cost variation 

forecasted with the three distributions does not largely vary from normal distribution results. 

Considering the scheduled EFM energy, the difference is higher for all distributions (Table 4). 

Minimum and maximum values reach up to 79% of total schedulable EFM energy, for t-scale 

distribution and 89% for lognormal distribution. These values correspond, e.g., to ESS and CA 

scheduled at different hours or to EFM energy scheduled at the same hour in opposite 

directions (increase and decrease). Standard deviation varies up to 8,9% and 11,1% for t-scale 

and lognormal distribution, respectively. For the gamma distribution, the results are 

comparable to the other two distributions. In conclusion, even if it is more reliable to use a price 

distribution that suits the historical data, the normal distribution could be used alternatively to 

t-scale, lognormal, or gamma distributions for modelling prices in the daily scheduling 

proposed in this paper. The distributions provide cost variation results comparable to normal 

 

Figure 3: Histogram of electricity prices for the time slice from 08:00-09:00 of a weekday including the 
corresponding probability density functions (PDFs) using the distributions evaluated in this paper [17,19]. 
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distribution. As regards the scheduled EFM energy, higher difference has to be taken into 

account. But also in this case, standard deviation and MAE values are acceptable.  

4 Conclusion  

This paper proposes a decision model for energy flexibility that minimizes energy costs and 

incorporates the risk measure CVaR. The optimization problem formulation over one day helps 

finding the daily optimum, and the risk appetite parameter ω defines the balance between 

energy cost reduction and economic risk. Furthermore, the evaluation approach for comparing 

results from different price distribution functions shows that the proposed decision model 

allows the use of normal, t-location scale, lognormal, and gamma distributions. Alternatively, it 

allows for modelling prices. The EFM schedule suggested by the decision model and its risk-

managing approach are also reliable in the case of different price modelling. Further 

improvements include integrating additional scenarios for the prices and forecast scenarios for 

load and renewable generation. The decision model could also integrate heat and cooling 

needs to use the relative flexibilities and optimize multiple sectors at the same time (sector 

coupling). The impact of different distribution functions on modelling price forecasts can be 

expanded by incorporating more scenarios and additional historical data.  
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