

Exploring polymorphism in molecular organic thin films

By Kaltenegger Martin

Table of Contents

- Introduction & Fundamentals
- Lead-phthalocyanine
- Phenoxazine
- Naproxen
- Conclusion

Lead-phthalocyanine

ULB What is polymorphism?

- 1 molecule exists in different crystal structures (packing)
- \rightarrow Impact on properties
 - (stability, morphology, processability, ...)

ULB

Brazilian Journal of Analytical Chemistry 2020, Volume 7, Issue 26, pp 12-17 doi: 10.30744/brjac.2179-3425.letter.rmbdezena.N26

LETTER

Ritonavir Polymorphism: Analytical Chemistry Approach to Problem Solving in the Pharmaceutical Industry

BAAC

Renan M. B. Dezena 💿 🖂 Preformulation Specialist Pharmaceutical Industry, Campinas, SP, Brazil

R.M.B. Dezena, Braz.J.Anal.Chem. 2020, 7 (26), 12-17

THE SIX POLYMORPHS OF CHOCOLATE

The Polymorphs of Chocolate – Compound Interest (compoundchem.com)

What is polymorphism?

- 1 molecule exists in different crystal forms (packing)
- →Impact on different properties (stability, morphology, processability, ...)
- Limited access in bulk crystallization
- Some phase only observable on surfaces

ULB Heterogeneous nucleation

- Nucleation: 1st step of crystallization
- \rightarrow Seems to determine polymorph
- Heterogeneous: on dust or surfaces
- \rightarrow Lowers the activation energy ΔG^*

- Substrate-induced-polymorphism (SIP) should be related to 2D crystallization
- For now: only a few molecular systems
- →Fundamental understanding necessary

Yves Geerts, kickoff meeting, 12.06.2018

2Dto3D

Thesis subject & strategy

Subject

- Investigations on polymorphism
- show the influence of different substrates on thin film formation

Principals substrate-induced-polymorphism (SIP)

Planned Strategy

- <u>3-4 parts:</u>
 - 1. SiO_x substrates
 - 2. Highly orientated pyrolytic graphite (HOPG)
 - 3. SiO_x + graphene
 - 4. SiO_x + graphene + chemisorbed molecules

ULB Thin film preparation

- From solutions:
 - Drop casting (covered)
 - Spin coating
 - Dip coating

- <u>Solution free:</u>
 - Physical vapor deposition (PVD)

AR Coating Techniques: Thin Film Deposition Methods (findlight.net)

Lead phthalocyanine (PbPc)

- <u>Physical vapour deposition</u>
- <u>Substrate:</u> HOPG, Graphene & SiOx
- <u>Known structure</u>: triclinic

ULB Substrate-induced polymorph

pubs.acs.org/cm

Article

From 2D to 3D: Bridging Self-Assembled Monolayers to a Substrate-Induced Polymorph in a Molecular Semiconductor

Yansong Hao, Gangamallaiah Velpula, Martin Kaltenegger, Wolfgang Rao Bodlos, François Vibert, Kunal S. Mali, Steven De Feyter, Roland Resel, Yves Henri Geerts, Sandra Van Aert, David Beljonne, and Roberto Lazzaroni*

ULB Methods of examination

- Specular X-ray diffraction:
 - Bragg condition: $\lambda = 2d_{hkl}\sin(\frac{2\theta}{2})$
 - Laue condition: $\vec{q} = \vec{G}$
- Grazing incidence X-ray diffraction:
 - Diffraction due to evanescent waves
 - Incoming angle $\alpha_i \neq \alpha_f$

•
$$\vec{q} = \begin{pmatrix} q_x \\ q_y \\ q_z \end{pmatrix} = \vec{k} - \vec{k_0}$$

ULB PbPc: 40 nm on HOPG

13

TIB From GIXD to crystal structure solution

grazing incidence x-ray diffraction

> determine unit cell parameters

2 extract intensities (|F(hkl)|²)

3 molecular dynamics simulations

ULB Indexation with GIDInd*

- refined unit cell
- 110 texture
- Energy optimization (Y. Hao, Mons)

	Predicted	Refined
a [Å]	7.707	8.140
b [Å]	13.231	12.860
c [Å]	13.300	13.030
α [°]	71.39	68.41
β [°]	80.71	80.95
γ [°]	78.09	81.21
V [Å ⁻³]	1250.95	1245.79

* M. P. Kainz, M. Kaltenegger et al, Appl. Cryst. 2021,54, 1256-1267

PbPc on Graphene & SiOx

• (<u>14</u> <u>14</u> - 1) - orientation

- (33-1)-orientation
- High mosaicity

16

Conclusion lead-phthalocyanine

- Substrate-induced polymorph confirmed
- Similar orientation on different substrates
 - \rightarrow flat-on

^{**ULB**} Phenoxazine

pubs.acs.org/crystal

Article

Molecular Packing of Phenoxazine: A Combined Single-Crystal/ Crystal Structure Prediction Study

Martin Kaltenegger, Louis Delaive, Sai Manoj Gali, Patrick Brocorens, Oliver Werzer, Hans Riegler, Yves Henri Geerts, Roberto Lazzaroni, Roland Resel,* and Jie Liu

Cite This: https://doi.org/10.1021/acs.cgd.1c00691

Thin film growth kinetics

19 **TU** Graz

ULB Kinetically driven polymorph

Phenoxazine on multiple substrates

All samples show kinetic driven polymorph \rightarrow (001)-orientation HOPG: smeared-out peaks \rightarrow mosaicity Graphene: clear peaks \rightarrow texture Carboxylic-acid: smeared-out peaks \rightarrow mosaicity

ULB Conclusion phenoxazine

Lp

- 2 polymorphic structures solved
- End-on orientations
- Form 2: kinetic driven polymorph but no substrate-induced polymorph
- Varying substrates: no influence on polymorph selection

Form 1 (100)

Form 2 (001)

ULB Naproxen S-enantiomer

- 2-(6-Methoxy-2-naphthyl)-propionic acid
- Nonsteroidal anti-inflammatory drug
- Chiral \rightarrow only S enantiomer

S-Naproxen on SiOx

Drop casting Spin coating 100-Form1 10-1-Form1 100-Form1 300-Form 1 10-1-Form 200-Form 002-Form (a.u.) ntensity (a.u. chlorobenzene Intensity chlorobenzene dioxane dioxane tetrahydrofuran tetrahydrofuran ethanol ethanol 10 12 1 q_z (nm⁻¹) 8 10 14 16 18 6 10 12 16 4 6 8 14 18 Δ $q_{z} (nm^{-1})$

End-on

(100)

24

FU Graz

Indexation 2nd form (GIDInd)

• <u>GIDInd:</u>

4 sets of in plane peaks 23 different peaks found \rightarrow monoclinic structure \rightarrow 14 diff. unit cell found

→ Crystal structure prediction in process

ULB Naproxen on various substrates

Most samples reveal Form 1 of naproxen **HOPG**: clear peaks representing (002)-orientation \rightarrow flat-on texture **Graphene**: flat on orientation & high mosaicity Carboxylic-acid: flat-on & end-on

2,0,0 0,1,0,0

10

12 14 16

HOPG

6

4

2

0

2

4

6

8

q_{xv} (nm⁻¹)

Graphene

Carboxylic-acid

ULB Conclusion naproxen

Lp &

- 2nd Form of naproxen: set of unit cells found
 → crystal structure missing
- Change in molecular orientation:
 end-on (silica) → flat-on (HOPG, Graphene)

ULB General Conclusion

- Lead-phthalocyanine: substrate-induced polymorph
- Phenoxazine: kinetic-driven polymorph
 - \rightarrow molecule-molecule interaction > substrate-molecule interaction
- Naproxen: 2nd polymorph found,

crystal structure solution is missing

 Substrates: may influence molecular orientation HOPG/graphene: flat-on (PbPc, naproxen)

Lead-phthalocyanine

phenoxazine

ULB

Acknowledgements

Supervisors: Roland Resel (TU Graz) Yves H. Geerts (ULB)

The institute of Solid State Physics (TU Graz) The Laboratory of Polymer Chemistry (Université Libre de Bruxlelles)

This work is part of the EOS-Project: From 2Dto3D ID:30489208

OS HE EXCELLENCE OF SCIENCE

Molecular packing analysis

input: lattice constants from GIXD experiments

Conclusion lead-phthalocyanine

• Substrate-induced polymorph confirmed

ULB

Similar orientation on different substrates
 → flat-on

- Epitaxy on graphene
 - \rightarrow 12 crystal alignments
- HOPG: graphene crystal orientations
 → 2D powder

Spatial distribution of (00-1) in real space

ULB Surface energy

- Surface unfavourable condition
- Requires surface energy (tension) γ
- OWRK: $\gamma = \gamma^d + \gamma^p$
- γ^d : dispersive component
- γ^p : polar component
- Young equation:

 $\gamma_{SG} = \gamma_{SL} + \gamma_{LG} * \cos \theta_C$

Schematic intermolecular interaction at interfaces

Schematic derivation of the Young equation.

ULB Surface free energies

