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Why use Helium Atoms? Charge Density Waves in Ta$,

 Helium atom scattering (HAS) is a powerful technique to analyse the surface properties Monitoring the phase transition in TaS,
 Helium atoms are scattered by the electron density 2-3 A above the first atomic layer due to * TaS, exhibits multiple charge density wave (CDW) states [2]
the Pauli repulsion = non-destructive, strictly surface sensitive technique * Transition from a nearly-commensurate (NC-CDW) phase to a commensurate (C-CDW) charge
 Typical energy range of helium atoms: 5-200 meV density wave phase at roughly T =220 K [3]
 Helium atoms are neutral and chemically inert therefore insensitive to surface charges  Debye-Waller measurement: elastic peak intensity plotted against the surface temperature
— investigation of insulting materials —2W(T<)
ST e o I(T) =1, - e s
 As anoble gas helium is chemically inert = completely inert investigation

with W (Ts) being the Debye-Waller (DW) exponent [3]
 Debye-Waller exponent contains contributions of all phonon modes
— measure for the electron-phonon coupling constant [4]

Experimental Setup

Helium atom scattering apparatus and scattering geometry * |ncreased sample temperature leads to more vibrational modes

 Helium beam is generated in the source chamber by supersonic expansion through a nozzle — decreasing specular intensity [4]

e Helium beam is scattered in the main chamber at UHV-conditions and detected in a * Very sharp, stepwise onset in the intensity at the transition temperature
guadrupole mass-spectrometer — discontinuous, first-order transition

* Chopper is added into the beam for energy dependent measurements (TOF) — rapid increase in electron-phonon coupling [3]

* Fixed source-detector angle Ogp = 0; + 8¢ = 91.5°
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Interaction processes at the surface
e Elastic diffraction:

no energy exchange between the helium atoms and surface
* Inelastic scattering

- . ‘ | | | o 2D-Polar Metals
incident helium atom looses or gains energy via creating or annihilating a phonon

* Selective adsorption resonance (SAR): Quasi-Freestanding Epitaxial Graphene w/ Gallium intercalation
helium atom is temporarily trapped in a bound state of the interaction potential * Using confinement heteroepitaxy (Chet) an atomically- ,,, _ Theta-Scan QFEGg, I'M Ts = ~160°C
thin (2D) metal can be intercalated [5] ?\ = 451(1)%
. . . . at an epitaxial graphene (EG)/ silicon carbide(SiC) el ) T — 501 K|1
Surface Diffusion in Reciprocal Space interface [5] ool
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* Only experimental method to continually monitor mobile species on both A length and ps . =
. unigue Raman features) [5,6] 2
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 Helium atoms scattered from moving molecules on the surface can exchange energy with the helium scatterin ool |
surface atoms resulting in in a broadening around the elastically scattered peak (analogous to 5 M
Doppler broadening) — _elastic broadeni £ alast K [1] e DW-measurement at specular peak: L | | | | _ .
oppler broadening) — quasi-elastic broadening of elastic pea 5 0,=530K — : : :

* Extent and rate of broadening depends on rate and mechanism of diffusion Parallel momentum transfer AK [A~1]

— no transition in e-phonon coupling observable
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* Scattered waves differ as a result of wave * TaS,: theoretical calculations (CC-calculations) to obtain information about the

changes on the surface during t,
— |oss of correlation [1]

* Final outcome: Intermediate scattering
function (ISF) I(AK,t)

* For simple models of diffusion, the ISF decays HZO/BIZTeg(lll)
exponentially [1]
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