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Abstract—The rise of electric vehicles (EVs) highlights the
importance of performance analysis and efficient motor selection,
including Induction Motors (IMs). Induction motors provide
enhanced efficiency in the flux-weakening region, leading to
increased ranges for EVs, and offering robustness and cost-
effectiveness compared to permanent magnet synchronous motors
(PMSMs). However, it is important to note that IMs experience
rotor cage losses at both high and low speeds. Accurate efficiency
mapping plays a vital role in facilitating the design of EV
motors. Efficiency analysis of dynamic drive cycle operating
points is crucial for evaluating vehicle motors. This paper
presents a baseline assessment for performance analysis, focusing
on enhancing efficiency map accuracy through comprehensive
drive cycle analysis using a combination of experiments, analytic
modeling, and numerical simulations on a laboratory-scale IM.
Analytic and numerical models are created and performance
plots are studied for a particular drive cycle covering a wide
range of operating points. A dedicated test-rig is set up to examine
the transient behavior of the motor during drive cycles, allowing
for a thorough analysis of its dynamic performance. The research
findings can be generalized to benefit real EV motors.

Index Terms—efficiency maps, induction motors, drive cycles,
electric vehicles, traction motors.

I. INTRODUCTION

The increasing demand for electric vehicles (EVs) has

highlighted the need to optimize the drive cycle performance

of IMs, which are vital components in delivering efficient

and reliable propulsion [1]. IMs offer advantages in terms of

safety, reliability, cost, and control compared to PMSMs in

EVs. In high-speed scenarios, IMs exhibit higher efficiency

by reducing the current in the flux-weakening region, while

PMSMs require the injection of negative current. However,

in low-speed or high-torque conditions, IMs may experience

increased losses due to their rotor cage losses and the strong

dependency of the rotor resistance on the temperature can

affect the control. Control of IMs is generally easier than

control of PMSMs, and in the event of inverter faults, they

naturally de-excite, providing increased reliability and safety

compared to PMSMs. Additionally, the high cost of magnets

in PMSMs stimulates designers to favor the selection of

IMs to reduce vehicle expenses [2], [3]. Analyzing the IM

performance in EVs across diverse drive cycles is vital for

optimizing their design, control strategies, and efficiency.

Precise assessment of efficiency under varying conditions is

crucial for reducing emissions and extending vehicle ranges

[4], [5].

Efficiency maps are essential for predicting motor

performance and optimizing energy consumption in electric

vehicles. Ensuring accuracy at transient operating points is

crucial for reliable efficiency maps, aiding system design and

motor selection for optimal IM efficiency [6], [7]. While

model-derived efficiency maps offer advantages like virtual

testing and deeper insights, challenges related to model

accuracy and transient effects must be addressed [8]–[10].

This research is dedicated to addressing the challenges

related to efficiency predictions within drive cycles and

evaluating the associated confidence levels. The primary focus

is on eventually enhancing the accuracy of performance

maps by conducting a detailed analysis of IM efficiency

at operating points derived from drive cycles. These cycles

encompass various operating points with different vehicle

speeds and torques, which are determined using a quasi-

static longitudinal vehicle model (QSS) [11], [12]. The QSS

model provides a simplified representation of the vehicle’s

mechanical behavior. The WLTP (Worldwide Harmonized

Light Vehicle Test Procedure) class 3 drive cycle is selected

for evaluation, as it effectively covers a range of demanding

operating points.

To contribute to a better understanding of the accuracy of the

use of performance maps, this study conducts a comprehensive

analysis integrating experimental investigations, analytic

modeling, and numerical simulations. In this first step, time-

stepping analyses are used. A crucial step involves using

down-scaled drive cycles for two different range vehicle

QSS models, which can be utilized in both the models

and experiments conducted with test case motors in the

laboratory. Experimental validation through tests on motor

prototypes is crucial for determining accuracy of the different

approaches and also generalise the results for IMs in the EV
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Fig. 1. Workflow of the study.

range. By comparing measured and predicted efficiencies of

the time-stepping analyses, the confidence levels associated

with the maps can be later evaluated. This research also

examines the temperature-dependent characteristics of the

selected parameters. Here, we focus on the winding losses, and

on friction losses in the analytic model, and solely on winding

losses in the numerical model. This approach aims to improve

the understanding of the most important factors affecting

the accuracy of the analysis. The workflow of this study is

presented in Fig. 1. Section 2 presents the baseline employed

in this research, including the test case studies, experimental

setup, analytic modeling approach, and numerical simulation

techniques. Section 3 presents the results obtained from the

analysis, showcasing the comparisons between the models’

efficiencies and discussing the reason of the differences and

accuracy analysis. Finally, Section 4 concludes the paper by

summarizing the findings.

II. BASELINE DETERMINATION

This section identifies a baseline of this research. The test

case studies will be presented and also the procedure of each

type of analysis, analytic, numerical, and experimental setup,

will be explained.

A. Test case studies

In this study, for the investigation of the efficiency

prediction, a mid-range (BMW i3) and a small-range (Smart

EQ) passenger car were selected to use their specifications

in the QSS model to obtain the required torque for the

drive cycle. To experimentally study the operating points of

the driving scenarios, one IM is available in the laboratory.

The vehicles and the lab motor’s specifications are listed

in Table I. By considering the motor’s specification, the

torque-speed profiles of the motors used in these cars for

the WLTP class 3 drive cycle as shown in Fig. 2 are

obtained. Due to the lower rating of the laboratory motor

compared to the motor in the selected cars, the operating

points obtained for the vehicles’ motors needed to be adjusted

for compatibility with the laboratory setup. To achieve this, a

mathematical method combined with the motors’ parameters

is used [14], and a down-scaling process was applied to obtain

TABLE I
VEHICLE MOTOR AND LABORATORY MOTOR SPECIFICATIONS [16], [17]

Vehicle Motor Specifications

Parameters Values

BMW i3 Smart EQ

Machine Type PMSM PMSM

Maximum Torque 250 Nm 161 Nm

Maximum Power 125 kW 61 kW

Base Speed 4800 rpm 3581 rpm

Maximum Speed 11400 rpm 11475 rpm

Lab Motor Specifications

Parameters Values

Max. Power 4.4 kW

Max. Torque 30.5 Nm

Rated Speed 1430 rpm

Maximum Speed 2850 rpm
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Fig. 2. WLTP class 3 drive cycle.

the operating points within the range of the laboratory motor.

The research utilized the operating points obtained from this

process to conduct the analysis and experimentation. The

visual representation of the operating points during the WLTP

class 3 drive cycle for two actual vehicle motors and the test

case motor utilized in this study is shown in Fig. 3. These

operating points were obtained from the quasi-static model of

the BMW i3 and Smart EQ. Subsequently, they were down-

scaled to align with the specifications of the laboratory’s IM

[15]. Note that this downscaling may lead to a low utilization

of the motor.

B. Analytic analysis

The analytic analysis was conducted using

MATLAB/Simulink [18], involving the development of

a precise model for the IM and its control system. The

motor parameters were obtained through experimental tests.

Notably, the model accounted for friction losses and iron

losses, taking into consideration the specific characteristics

observed during the experiments. Fig. 4 presents the control

system of the IM using the Rotor Oriented Flux Control

(RFOC) that can support transient behaviour required by the

drive cycles. This simulation considered a speed filter and

also an encoder model to align to the real experiment. The

temperature coefficient obtained from the experiment is taken

into account for both the rotor and the stator resistance in

the model. Additionally, considering the temperature effect
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Fig. 3. Torque-speed operating points for the WLTP drive cycle: (a) BMW i3, (b) Smart EQ, (c) down-scaled for BMW i3 to the laboratory IM’s range, (d)
down-scaled for Smart EQ to the laboratory IM’s range.
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on the bearing’s oil, the frictional torque coefficient is also

incorporated into the model [19]. The efficiency is calculated

according to (1), where Pout is the output power of the motor,

PCu is the total stator and rotor resistance losses, PFe is the

iron losses, and PFric denotes the friction losses. To simplify

the analysis, only the operating points in the motoring mode

of the motor torque-speed profile are exclusively considered,

with the potential to extend this approach to the generator

mode as well.

η =
Pout

Pout + PCu + PFe + PFric

× 100% (1)

C. Numerical analysis

Numerical simulations were performed to analyze the

efficiency of the motor by Finite Element Analysis (FEA). The

simulations were carried out using the JMAG® software [20],

which allowed for accurate representation and analysis of the

motor’s behavior in 2D and 3D environments. In this research,

a 2D model was employed to capture the electromagnetic

characteristics of the motors under different operating points

within the drive cycles. In this approach, we take into account

the temperature-dependent characteristics of the stator and

the rotor cage resistances. It is important to emphasize that

a comprehensive thermal analysis, encompassing temperature

considerations for various losses, will be carried out separately

in the future. Furthermore, the mesh size can strongly influence

the output of the simulation. The finer the mesh, the more

precise the result. The half 2D FEA model of the IM in

JMAG® is shown in Fig. 5. In this model, the iron losses of

the stator material and also the exact winding configuration

of the stator are considered. The rotor end ring leakage

inductance and the resistance of the motor was taken into

account. A basic PWM control system has been employed to

create an efficiency plot from this model. Due to this model’s

capabilities, it is imperative to emphasize that this approach

does not include RFOC and follows straightforward operation.

JMAG® is equipped to produce a motor response table for

each torque-speed operating point in a steady-state condition.

This table serves as a grid, and the accuracy of the motor’s

performance is closely linked to the granularity of this grid.

D. Experimental investigation

The laboratory tests for the IM have been successfully

completed. The control system, as illustrated in Fig. 4, was



Fig. 5. A 2D FEA model of IM in JMAG® designer.

employed in the laboratory setup. To enhance the model

accuracy by considering temperature effects, a significant

number of temperature sensors are available.

During these tests, various parameters were recorded for

analysis. This included measurements of the stator voltage and

current, as well as the output torque and speed of the motor,

throughout the drive cycles. The laboratory setup also included

a load machine, which is a Permanent Magnet Synchronous

Motor (PMSM). It is important to note that the PMSM in

this setup is torque-controlled, and a torque sensor has been

installed on the shaft between the two motors to monitor

and measure torque accurately. This data collection process

allowed for the calculation of energy conversion within the

motor and the creation of precise efficiency plots. These

results can be used for analysis and comparison with the

models developed. Furthermore, in all experimental tests, the

motor temperature was raised to 30 ◦C using a heater before

commencing the tests, such heating is needed because of the

down-scaling that led to low thermal utilisation.

III. RESULT AND DISCUSSION

Both numerical and analytic analyses were performed at

a specific temperature (30 ◦C) to evaluate the efficiency of

the IMs within the operating points of the selected drive

cycle. The analysis focused on the WLTP class 3 drive cycle,

chosen for its comprehensive coverage of speed and torque

ranges relevant to various driving conditions, including rural

and inter-city scenarios.

In Fig. 6, efficiency plots are presented, encompassing

various methods, including numerical and analytic simulations,

alongside experimental tests. These plots correspond to

operational conditions derived from both BMW i3 and

Smart EQ motors, and they were obtained from energy

conversion during the drive cycle for each operating

point. In most operating points, there is a noticeable

similarity among the graphs, indicating a strong concurrence

between the drive cycle simulation methods employed in

both models and the results from experimental tests. This

underscores the effectiveness of the baseline determination.

However, as depicted in Fig. 6, substantial differences

are evident, highlighting the influence of factors such as

the temperature effect on rotor losses, mechanical friction,

parameter uncertainty, and variations in the control methods

of the inverter and control system.

A. Accuracy analysis

For assessing the accuracy and error of the models in

comparison to the experimental results, two statistical methods

are employed. The Root Mean Square Error (RMSE) serves as

a measure to quantify the average magnitude of discrepancies

between two sets of data. It proves particularly valuable when

evaluating the precision of a model’s predictions relative to

the experimental data. RMSE can be computed according to

(2), where N, mi, and si denote the number of data points,

efficiency for each points from the models (analytic and

numerical) and efficiency from experimental test [21].

RMSE =

√

√

√

√

1

N

N
∑

i=1

|mi − si|
2

(2)

The second method involves the use of the Correlation

Coefficient, which assesses the strength and direction of

a linear relationship between the model’s predictions and

experimental data. The correlation coefficient is computed

using (3), where σX and σY are the standard deviations of

model and experimental result respectively, and cov(X, Y) is

their covariance. The correlation coefficient ranges from −1 to

1. A high positive correlation signifies similar patterns, while

a low/near-zero correlation suggests a weaker connection, with

the sign indicating its direction [21].

Correlation Coefficient(r) =
cov(X,Y)

σX · σY

(3)

These two methods were implemented, and the results

are presented in Table II. The correlation coefficients in

both models underscore the similarity in efficiency patterns

compared to experimental data. However, it is noteworthy

that the table results indicate a higher efficiency error in

the numerical simulation. This difference can be attributed

to several contributing factors. First: the control system

employed in the numerical simulation differs significantly

from the one used in the experimental and analytic

approaches. Additionally, the numerical simulation neglects

the consideration of a fixed flux and initiates the efficiency

map from zero current instead of commencing from the

magnetization current, which serves as a predefined reference

point within the control system in Fig. 4. Furthermore, in the

numerical simulation conducted within JMAG®, linear friction

losses that increase linearly with speed are considered, as

opposed to employing a non-linear equation [22]. Moreover,

as the drive cycle progresses, the motor temperature rises,

impacting the copper and the cage losses as well as friction

TABLE II
EFFICIENCY ERROR ANALYSIS IN ANALYTIC AND NUMERICAL

SIMULATIONS

Smart EQ BMW i3

RMSE r RMSE r

Analytic 2.78 0.9959 3.12 0.9952

Numerical 8.91 0.9708 9.83 0.9650
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losses. However, in the JMAG® simulation, only fixed

resistances are considered for both stator and rotor resistances,

which could potentially introduce deviations in both overall

losses and efficiency.

Despite the analytic model showing a lower error compared

to the numerical model, it still exhibits significant inaccuracies,

potentially owing to uncertainties in the model. These

uncertainties may arise from the not accounting for the impact

of temperature on the parameters, as well as potential factors

like iron loss, friction loss, and the skin effect.

B. Sensitivity analysis

To gain a deeper insight into the factors affecting

the model accuracy, such as temperature, analyses were

performed to evaluate how temperature influences the

precision of the model’s efficiency predictions. Modifications

were implemented for the resistance values in both analytic

and numerical simulations, taking into account temperature

variations in both the stator and the rotor windings. The

analyses were guided by temperatures observed throughout the

drive cycle experiments, where the temperature increased from

30 ◦C to 60 ◦C throughout the cycle. Specific attention was

given to the maximum temperature of 60 ◦C occurring within

the stator winding and the average temperature of 40 ◦C within

the motor winding across drive cycles. Additionally, changes

to the coefficient controlling the temperature dependency

of friction losses were exclusively made in the analytic

simulation. Following these modifications, two simulation runs
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were conducted, each incorporating the adjusted resistance

values, and accuracy analyses were carried out on the results.

Fig. 7 illustrates the Root Mean Square Error (RMSE) and

the correlation coefficient (r) comparing both numerical and



analytic results to the experimental data. This comparison is

conducted across operating points for both the Smart EQ and

the BMW i3 vehicles under different temperature conditions.

As seen in Fig. 7, the RMSE of the efficiency values at

40 ◦C decreased in all analyses, indicating closer alignment

with the experimental values for both smart EQ and BMW i3

operating points. Correlation coefficients have also improved

at this average temperature. However, at the maximum

temperature of 60 ◦C, errors show minimal change, indicating

that the revision of winding losses to this temperature may not

be the key to reduce the errors.

IV. CONCLUSION

This study investigates dynamic performance analyses

of IMs concerning their applicability in specific electric

vehicles (EVs) due to their cost-effectiveness and simplified

control compared to PMSMs. Analytic and numerical models

were created to analyze the WLTP class 3 drive cycle,

incorporating down-scaled torque-speed points within the

laboratory’s IM range, originating from two different vehicles.

The performances of different operating points were studied

both analytically and numerically at specific temperature, and

experimental tests were also conducted.

Performance plots derived from simulation analysis display

notable discrepancies when contrasted with experimental

results, primarily owing to the impact of temperature on

the rotor and the stator winding losses, mechanical friction,

and variations within the control systems. Accuracy analysis

was performed using root mean square error and correlation

coefficient methods to measure the errors and the similarity

between simulations and experimental results. The numerical

model exhibited more errors due to limitations in replicating

the control system accurately, as well as inaccuracies in

the friction losses equation within the software. To better

understand the effect of temperature on the model accuracy,

the resistances of the stator and rotor windings were adjusted

in both the analytic and numerical models, considering their

temperature dependency. Additionally, in the analytic model,

the temperature-dependent coefficient of friction was modified.

The results showed that at the motor’s average temperature,

errors decreased, and the correlation coefficient increased. This

implies that by modifying temperature-related parameters,

errors can be minimized.

Overall, this study provides valuable insights into the

precision and reliability of analytic and numerical methods

for depicting motor efficiency across diverse operating points.
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