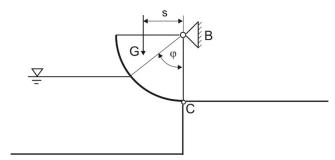
Institut für Strömungslehre und Wärmeübertragung Technische Universität Graz

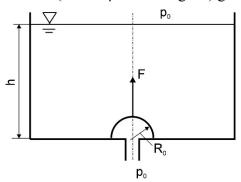

Strömungslehre und Wärmeübertragung I, UE (LV 321.101)

SS 2025 4. Übungsblatt

Hydrostatik- Fortsetzung

1. Aufgabe:

Der Abschluss eines Staubeckens wird, wie in der Skizze dargestellt, durch eine Walze in Form eines Viertelzylinders erreicht. Zum Öffnen des Abflusses ist der Zylinder längs der Achse drehbar gelagert und im Punkt C gegen die Auflage abgestützt (statisch bestimmte Lagerung). Vom Zylinder sind der Radius R, die Länge L senkrecht zur Zeichnung, das Eigengewicht G sowie die Komponente s der Schwerpunktslage bekannt.



Das Becken ist mit Wasser der Dichte ρ bis zu einer Höhe gefüllt, die in Form des Winkels ϕ bezüglich des Koordinaten-ursprungs des Zylinders gegeben ist.

Berechnen Sie für den geschlossenen Zustand die Komponenten B_X , B_Y und C_X der Auflagerreaktionen.

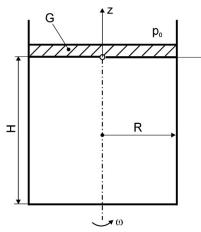
2. Aufgabe:

Die Bodenöffnung eines Flüssigkeitsbehälters ist mit einer dünnen Halbkugelschale (Radius R_0 = 0,25 m, Masse m_S = 10 kg) verschlossen. Der Behälter ist bis zu einer Höhe h = 5 m mit Wasser (Dichte ρ = 1000 kg/m³) gefüllt.

Berechnen Sie die Kraft, die zum Öffnen des Abflusses erforderlich ist.

<u>Anmerkung:</u> Auf die Halbkugelschale wirkt von unten, genauso wie auf den Flüssigkeitsspiegel von oben, der Umgebungsdruck p₀.

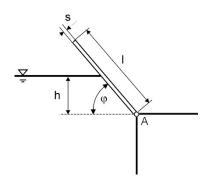
4. Übungsblatt Seite 1 von 2


Institut für Strömungslehre und Wärmeübertragung Technische Universität Graz

Strömungslehre und Wärmeübertragung I, UE (LV 321.101)

SS 2025 4. Übungsblatt

3. Aufgabe:


Ein rotationssymmetrischer Behälter (Radius R) ist mit einer Flüssigkeit der Dichte ρ bis zur Höhe H gefüllt. Der Behälter ist mit einem Kolben mit dem Gewicht G verschlossen und rotiert mit der Winkelgeschwindigkeit ω . Der Umgebungsdruck p_0 ist bekannt. Der Koordinatenursprung soll auf der Behälterachse direkt an der Unterseite des Kolbens liegen (siehe Skizze).

- Berechnen Sie den Druck p_2 am Behälterboden für den ruhenden Behälter ($\omega = 0$). Der Druck direkt unterhalb des Kolbens soll mit p_1 bezeichnet werden.
- b) Berechnen Sie die Druckverteilung p(r, z) im rotierenden Behälter ($\omega \neq 0$). Die auftretende Konstante ist aus dem Kräftegleichgewicht am Kolben festzulegen.
- An welcher Stelle r wirkt bei Rotation am Behälterboden derselbe Druck p₂ wie im ruhenden Behälter?
- d) Unter bestimmten Bedingungen kann dabei der Dampfdruck p_D der Flüssigkeit unterschritten werden. An welcher Stelle wird dies zuerst erreicht? Berechnen Sie jene Winkelgeschwindigkeit ω , bei der an der kritischen Stelle der Druck den Wert $p_D = 0.2$ p_0 erreicht.

4. Aufgabe - Zusatzaufgabe:

Ein Wasserbecken wird, wie in der Skizze dargestellt, seitlich durch eine ebene Platte verschlossen.

Die Verschlusskraft wird dabei durch das Eigengewicht der Platte (Breite b, Länge l, Dicke s, Dichte des Plattenmaterials ρ_P) erreicht.

Berechnen Sie die Füllhöhe h des Beckens in Abhängigkeit vom Neigungswinkel φ der Platte. Berechnen Sie außerdem die maximale Füllhöhe, bis zu der diese Art von Verschluss funktioniert.

4. Übungsblatt Seite 2 von 2