Schriftliche Prüfung aus **Signaltransformationen**Teil: Dourdoumas am 12.10.2018

Name / Vorname(n):

Kennzahl / Matrikel-Nummer:

1 2 3

erreichbare Punkte

4

2

4

AUFGABE 1

Betrachten Sie die lineare Rekursionsgleichung

$$x_{i+2} + x_{i+1} - 2x_i = u_i$$
 (i = 0,1,2,...)

mit den Anfangswerten x_0 und x_1 sowie $u_i = K(0.5 + i)3^{-i}$. Hierbei ist K eine Konstante. Ermitteln Sie in *mathematisch nachvollziehbarer Weise*

- a) die z-Transformierte $\bar{u}(z)$,
- b) die z-Transformierte $\bar{x}(z)$,
- c) die Lösung x_i ausgehend von der z-Transformierten $\bar{x}(z)$ für die Werte $K=0, x_0=1$ und $x_1=0$.

AUFGABE 2

Gegeben sei die z-Transformierte $\bar{f}(z)$ einer Folge (f) mit den Elementen f_i :

$$\bar{f}(z) = \frac{z}{[2z^2 + az + b][z^2 - 1.5z + 0.5]}$$

Hierbei sind a und b reelle Konstanten.

Ermitteln Sie in *mathematisch nachvollziehbarer Weise* notwendige und hinreichende Bedingungen für a und b, damit der Grenzwert $f_{\infty} := \lim_{i \to \infty} f_i$ existiert und berechnen Sie diesen.

AUFGABE 3

Betrachten Sie die lineare Differentialgleichung

$$\frac{dx}{dt} = 3x + u$$

mit dem Anfangswert $x(t=0) = x_0$ und der Eingangsfunktion $u(t) = \sigma(t-1)(t-1)e^{-2(t-1)}$. Hierbei wird mit $\sigma(t)$ die Sprungfunktion symbolisiert.

Ermitteln Sie mit Hilfe der LAPLACE-Transformation in mathematisch nachvollziehbarer Weise

- a) die Laplace-Transformierte $\bar{x}(s)$ der Lösung x(t),
- b) die Lösung x(t).

Schriftliche Prüfung aus **Signaltransformationen**Teil: Dourdoumas am 18.12.2018

Name / Vorname(n):

Matrikel-Nummer:

erreichbare Punkte

Bestimmen Sie für die unten angegebenen Laplace-Transformierten $\bar{f}_1(s)$, $\bar{f}_2(s)$ und $\bar{f}_3(s)$ auf mathematisch nachvollziehbare Weise die Grenzwerte der jeweiligen Originalfunktionen für $t \to \infty$, d. i. $\lim_{t \to \infty} f(t)$, falls diese existieren.

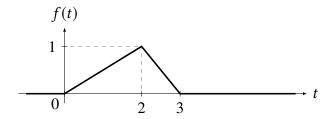
a)
$$\bar{f}_1(s) = \frac{s-2}{s^3 - 2s - 4}$$
.

b)
$$\bar{f}_2(s) = \frac{1}{s^4 - 3s + 1}$$
.

c)
$$\bar{f}_3(s) = \frac{1}{-s^3 - 2s^2 - s}$$
.

Aufgabe 2:

Die Funktion f(t) hat nachfolgenden Verlauf:



Bestimmen Sie auf mathematisch nachvollziehbare Weise die Laplace-Transformierte $\bar{f}(s)$ der Funktion f(t).

Aufgabe 3:

Gegeben sei die Differenzengleichung (rekursive Relation)

$$x_{i+1} + ax_i = u_i$$
, $i = 0, 1, 2, ...$

mit $u_i = \sigma_i + b^i$. Hierbei bezeichnet σ_i die diskrete Sprungfunktion; a und b sind reelle Konstanten. Bestimmen Sie auf mathematisch nachvollziehbare Weise

- a) die z-Transformierte $\tilde{u}(z)$ der Eingangsfolge (u) mit den Elementen u_i ,
- b) die z-Transformierte $\tilde{x}(z)$ der Folge (x) mit den Elementen x_i .

Es sei nun b = 1 und $x_0 = 0$.

- c) Bestimmen Sie auf *mathematisch nachvollziehbare Weise* die Lösung x_i unter Anwendung der z-Transformation.
- d) Geben Sie *notwendige und hinreichende* Bedingungen für a an, sodass der Grenzwert $\lim_{i\to\infty} x_i$ existiert und berechnen Sie diesen.

Schriftliche Prüfung in **Signaltransformationen** Teil: Dourdoumas

am 16.1.2019

Name / Vorname(n):
Kennzahl / Matrikel-Nummer:
1. Aufgabe 6 Pkte:
2. Aufgabe 4 Pkte

Aufgabe 1

Betrachten Sie die Differentialgleichungen

$$\begin{pmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{pmatrix} = \begin{pmatrix} 0 & 1.5 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \begin{pmatrix} 0 \\ 2 \end{pmatrix} u$$

mit den Anfangswerten $x_1(0)$, $x_2(0)$ und der Eingangsfunktion u(t).

- Bestimmen Sie die LAPLACE-Transformierten $\overline{x}_1(s)$ und $\overline{x}_2(s)$ in Abhängigkeit der Anfangswerte $x_1(0)$ und $x_2(0)$ und der LAPLACE-Transformierten $\overline{u}(s)$.
- Als Eingangsfunktion u(t) dient jeweils eine der folgenden zwei Funktionen:

I:
$$u_t(t) = \sin^2 t$$
 für $t \ge 0$

II:
$$u_{II}(t) = \begin{cases} 0 & \text{für } t < 3 \\ 1,5-1,5\cos^2(t-3) & \text{für } t \ge 3 \end{cases}$$

Die Anfangswerte betragen nun $x_1(0) = x_2(0) = 0$.

Ermitteln Sie mit Hilfe der LAPLACE-Transformation in *mathematisch nachvollziehbarer* Weise für jeden Fall die zugehörige Lösung $x_2(t)$.

Bestimmen Sie für beide Fälle - falls diese jeweils existiert - die *stationäre* Lösung $x_{2.stat.}(t)$.

Aufgabe 2

Betrachten Sie zwei Folgen (f) bzw. (h) mit den zugehörigen z-Transformierten

$$\overline{f}(z) = \frac{1+z^7}{z^8+z^9}$$
 bzw. $\overline{h}(z) = \overline{f}(-z)$.

- Berechnen Sie durch Anwendung des Endwertsatzes der z-Transformation die Grenzwerte $f_{\infty} := \lim_{i \to \infty} f_i$ und $h_{\infty} := \lim_{i \to \infty} h_i$, falls diese existieren. Begründen Sie Ihre Antworten mathematisch!
- Ermitteln Sie in *mathematisch nachvollziehbarer Weise* die Originalfolgen (f) und (h).
- Bestimmen Sie in *mathematisch nachvollziehbarer Weise* die z-Transformierte der Folge (g) := (h) (f) mit den Elementen $g_i := h_i f_i$.
- Skizzieren Sie die Folge (g) für $0 \le i \le 11$.

Schriftliche Prüfung aus **Signaltransformationen**Teil: Dourdoumas am 15.03.2019

Name / Vorname(n):

Matrikel-Nummer:

erreichbare Punkte

3

3

a) Gegeben sei die lineare Rekursionsgleichung

$$f_{i+1} = f_i + a f_{i-1}$$
 mit $f_i = 0$ für $i < 0$

und dem Anfangswert f_0 . Welches mathematische Werkzeug wurde in der Vorlesung behandelt, um solche Rekursionsgleichungen aufzulösen und explizit darzustellen?

- b) Wenden Sie dieses Werkzeug auf obige Rekursionsgleichung an, um den Wert f_5 auf mathematische nachvollziehbare Weise zu bestimmen; es sei a = 2 und $f_0 = 3$.
- c) Bestimmen Sie den Grenzwert $\lim_{i\to\infty}f_i$, falls dieser existiert. Begründen Sie Ihre Antwort!

Aufgabe 2:

a) Bestimmen Sie auf *mathematisch nachvollziehbare Weise* die Laplace-Transformierte $\bar{x}(s)$ der Integral-Differentialgleichung

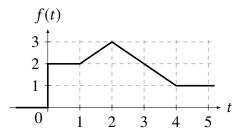
$$\frac{\mathrm{d}x}{\mathrm{d}t} + ax - b \int_{0}^{t} x(\tau) \,\mathrm{d}\tau = 0,$$

in Abhängigkeit des Anfangszustandes x_0 .

- b) Bestimmen Sie auf *mathematisch nachvollziehbare Weise* die Zeitfunktion x(t) für a = 0 und b = -4 in Abhängigkeit des Anfangszustandes x_0 .
- c) Ermitteln Sie die stationäre Lösung $x_{\text{stat}}(t)$ und den Grenzwert $\lim_{t\to\infty} x(t)$, falls diese jeweils existieren. Begründen Sie jeweils Ihre Antwort!

Aufgabe 3:

Die Funktion f(t) habe nachfolgenden Verlauf:



Bestimmen Sie auf mathematisch nachvollziehbare Weise die Laplace-Transformierte $\bar{f}(s)$ der Funktion f(t).

Aufgabe 4:

Bestimmen Sie auf *mathematisch nachvollziehbare Weise* jeweils die Laplace-Transformierte von

a)
$$f(t) = \sin^2(3t)$$
 und b) $g(t) = \sin(3t) \cdot \cos(3t)$.

Schriftliche Prüfung aus **Signaltransformationen**Teil: Dourdoumas am 17. 5. 2019

Name / Vorname(n):

Kennzahl / Matrikel-Nummer:

 $\bigcirc{1}\bigcirc{2}\bigcirc{3}$

erreichbare Punkte

4

2

Gegeben sei die lineare Rekursionsgleichung

$$x_{i+1} - 3x_i + u_i = 0$$
 $i = 0, 1, 2, ...$

mit dem Anfangswert x_0 und $u_i = 1 - \cos^2\left(i\frac{\pi}{2}\right)$.

- a) Bestimmen Sie in mathematisch nachvollziehbarer Weise die z-Transformierte X(z).
- b) Ermitteln Sie durch Anwendung der z-Transformation für $x_0 = 0$ die Lösung x_i .

Aufgabe 2:

Gegeben sei folgendes System von linearen Differentialgleichungen

$$\frac{dx_1}{dt} = -x_1 + 2x_2$$

$$\frac{dx_2}{dt} = 2x_1 - 4x_2 + u$$

mit den Anfangswerten $x_1(0) = 1$, $x_2(0) = 0$ und $u(t) = e^{-5t}$.

- a) Bestimmen Sie die zugehörigen LAPLACE-Transformierten $X_1(s)$ und $X_2(s)$.
- b) Berechnen Sie im *Bildbereich* den Grenzwert $\lim_{t\to\infty} x_1(t)$, sofern dieser existiert. Geben Sie eine *mathematische Begründung* für Ihre Antwort an!
- c) Ermitteln Sie durch Anwendung der LAPLACE-Transformation die Originalfunktion $x_1(t)$.

Aufgabe 3:

Ermitteln Sie für die vorgegebenen z-Transformierten F(z) und G(z) in mathematisch nachvollziehbarer Weise jeweils den Grenzwert der Originalfunktion

$$\lim_{i\to\infty}f_i\quad\text{ und }\quad\lim_{i\to\infty}g_i,$$

falls dieser existiert. Geben Sie eine mathematische Begründung für Ihre Antwort an!

I.
$$F(z) = 2 + \frac{3z+3}{(z^2+0.5z-0.5)(z+0.5)}$$

II.
$$G(z) = 1 - \frac{2.5z^2}{(z^2 + 1.5z + 0.5)(z + 0.3)}$$

Schriftliche Prüfung aus **Signaltransformationen**Teil: Dourdoumas am 2.7.2019

Name / Vorname(n):

Matrikel-Nummer:

1 2 3 4

erreichbare Punkte

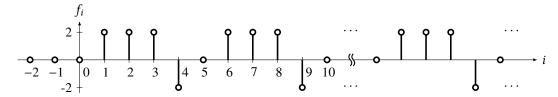
3

2

2

3

Gegeben sei die Folge (f) mit den Elementen f_i gemäß folgender Abbildung:



- a) Ermitteln Sie auf *mathematisch nachvollziehbare Weise* die *z*-Transformierte obiger Folge $\bar{f}(z)$.
- b) Die z-Transformierte $\bar{q}(z)$ der Folge (q) sei gegeben durch

$$\bar{g}(z) = 3 \frac{z^5 + z^4 + z^3 - z^2}{z^5 - 1}$$
.

Stellen Sie die Folge (q) graphisch dar. Begründen Sie Ihre Antwort!

Aufgabe 2:

Gegeben sei die z-Transformierte $\bar{f}(z)$ der Folge (f):

$$\bar{f}(z) = \frac{z}{(-2z^2 + a_1z + a_0)(z - 1)},$$

mit den positiven Konstanten a_0 und a_1 . Geben Sie *notwendige und hinreichende* Bedingungen für a_0 und a_1 an, so daß der Grenzwert $f_{\infty} := \lim_{i \to \infty} f_i$ existiert und bestimmen Sie diesen.

Aufgabe 3:

Gegeben sei die Differentialgleichung

$$\frac{dx}{dt} = -3x + te^{-3t}$$
, mit dem Anfangswert $x(0) = x_0$.

- a) Bestimmen Sie auf mathematisch nachvollziehbare Weise die Lösung x(t).
- b) Ermitteln Sie sofern existent den Grenzwert $x_{\infty} := \lim_{t \to \infty} x(t)$.

Aufgabe 4:

a) Ermitteln Sie auf mathematisch nachvollziehbare Weise die Originalfunktion x(t) der Laplace-Transformierten

$$\bar{x}(s) = \frac{5}{s(s^2 + 2s + 5)}.$$

b) Bestimmen Sie die stationäre Lösung $x_{st}(t)$, sofern diese existiert. Begründen Sie Ihre Antwort!