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Abstract

In the context of Clinical Forensic Imaging our task is to create a tool which allows

visualizing volumetric data from MRI/CT and conventional 2D image data in the same

reference system. The data is difficult to interpret without a reference therefore we register

the data to a reference model. First, we investigate different reference models. Second,

we presented two registration processes; one for volume to 3D model registration and one

for image to 3D model registration. For volume to 3D model registration we calculate

an initial transformation based on corresponding markers between the reference model

and the volume data. The initial transformation is refined with the Iterative Closest

Point (ICP) algorithm. For image to 3D model registration we use the POSIT algorithm

which uses corresponding markers between the reference model and the image data. As

result we calculate texture coordinates to apply the image as a texture on the reference

model. The experiments have shown that due to the ICP algorithm, the registration has

a tolerance to measurement errors of the marker locations. On the other hand the image

to 3D model registration process uses the POSIT algorithm; measurement errors of the

marker locations directly influence the result. The appearance of the reference model has

to be adjusted manually according to the data. The posture of the reference model can be

adapted automatically for volume to mesh registration but nevertheless some adjustments

have to be done manually. For image to 3D model registration the entire posture has to

be adapted manually.

Keywords. medical image analysis, rigid image registration, pose estimation, reference

model, ICP, POSIT, MakeHuman
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Medical Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Aims of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 4

The clinically well-established radiological methods Magnetic Resonance Imaging

(MRI) and Computed Tomography (CT) give us information that can also be used for

forensic questions which is the aim of Clinical Forensic Imaging.

Clinical Forensic Imaging has taken on the task to develop a method for acquiring data

of internal injuries in the living as basis for forensic expertise at court. Currently only the

external inspection of the (living) body by means of images is used for the gathering of

evidence. But the radiological methods allow the clinical forensic medicine to provide an

additional and objective basis for examining and evaluating internal injuries in the living.

Therefore these methods provide an increased legal certainty in the juridical processing.

The forensic evaluation of living cases following i.e. domestic and sexual violence,

strangulation, child maltreatment, traffic related and other incidents has considerably

gained in importance during the past years. The reasons, above others, are in general an

increased sensibility towards acts of violence. Forensic imaging aims at the reconstruction

of the sequence of events, the interpretation of severity of injuries and the life-threatening

quality of an act. In combination with MRI and CT studies the external and internal in-

spection of the living cases present a unitary image of the injuries and provide a significant

contribution to legal security.

1



2 Chapter 1. Introduction

Figure 1.1: Schematic outline of the aim of this work. Image data and volume data is
registered to the same reference model.

1.1 Motivation

The main goal of the Ludwig Boltzmann Institute of Clinical-Forensic Imaging (LBI-CFI)i

is to lay the fundamentals for implementing clinical forensic imaging into the forensic rou-

tine examination of living persons. Typically MRI and CT are used in medicine therefore

mostly medical personal uses them. On the contrary within juridical processes mainly

non-physicians are involved. Data from MRI and CT are difficult to interpret but this

often applies to images as well if there is no reference. In order to improve the application

of clinical forensic imaging in juridical processes the data has to be prepared. Our goal

is to create visualizations from data of clinical forensic imaging which are easily compre-

hensible for non-physicians. We also lay the fundamentals for a system to compare injury

locations from 3D and 2D data.

ihttp://cfi.lbg.ac.at

http://cfi.lbg.ac.at


1.2. Medical Imaging 3

1.2 Medical Imaging

There is a large variety of imaging modalities in clinical practice for example Single Photon

Emission (SPECT), Positron Emission Tomography (PET) or Ultrasound (US). In this

work we concentrate on Magnetic Resonance Imaging (MRI) and Computed Tomography

(CT). Both modalities give us 3D-Voxel data with spacing information. With CT we have

to consider the radiation dose because of ionizing radiation. Without a medical indication

the usage of CT for living persons cannot be justified. MRI on the other side is a non-

invasive technique. Since we focus on living persons MRI is the method of choice. Figure

1.2 shows example MRI images.

Figure 1.2: Brain MRI Images

1.3 Aims of the Thesis

In this thesis our goal is to develop a tool which allows visualization of evidence from

image data from various sources. Furthermore internal evidence from MRI and CT needs

to be displayed in the same reference model. Figure 1.1 illustrates the work within this

thesis. To meet the demands we need to be able to register 2D-Images and 3D-Volumetric

data to the reference model. The first application of the tool is to create visualizations

which are used in court. Because of the presentation of the evidence on a reference model

it is easier to discern the information. The second application is the usage for correlation
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studies. Within correlation studies internal and external evidence is compared. The tool

allows this comparison with respect to the location of the evidence in the reference model.

The two applications have different requirements of accuracy. Accuracy is the difference

between the real position and the position on the model. For visualizations a divergence of

a few centimeters is tolerable while for correlation studies the divergence has to be within

a few millimeters.

1.4 Structure of this thesis

In Chapter 2 we present corresponding state-of-the-art methods. Chapter 3 describes the

selection process of finding a suitable model which we can use as reference model. In

continuation we take a closer look at the selected model. The next Chapter 4 is engaged

in the task of volume to mesh registration. Firstly it is necessary to create a 3D-Mesh

from the volumetric data since the reference model is a 3D-Mesh. The initial registration

is performed based on markers and is afterwards refined. We also describe a method

to adapt the posture of the reference model. In the following Chapter 5 we register

images to the reference mesh. The goal of Chapter 5 is to bring the image as texture on

the reference model in the same position as shown in the image. Therefore we have to

estimate the position of the person with respect to the camera. In Chapter 6 we performed

experiments with the methods which are presented in Chapter 4 and Chapter 5. Finally

Chapter 7 provides the conclusion of this thesis and discusses future work.



Chapter 2

Related Work

Contents

2.1 A Definition of Image Registration . . . . . . . . . . . . . . . . . 6

2.2 Rigid and Similarity Transformation . . . . . . . . . . . . . . . . 6

2.3 Nonlinear Registration . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Our goal is to register 2D-Images and 3D-Volumetric data to the reference model

therefore we have to investigate registration methods. Nowadays image registration is a

wide area of research, a full review is beyond the scope of this thesis. Nevertheless there

have been some important surveys on this topic in the recent years. A more general paper

[4] addresses image registration techniques in computer vision, image processing, medical

imaging and remote sensing. Especially for registration methods in computer vision a

survey can be found in [31].

On the topic of medical image registration there are some standard books. One of

them is the compendium for medical image registration [13]. The books [9] and [2] include

chapters about medical image registration but are focused on image registration in a more

general way.

In order to classify the variety of registrations methods we first make the distinction

between linear and nonlinear methods. Secondly we divide them further in feature- and

intensity based methods. Intensity based methods use the image directly whereas feature

based methods require a preprocessing step to extract points of interest (POI).

5



6 Chapter 2. Related Work

2.1 A Definition of Image Registration

Generally image registration is the process of aligning two images. There is a large num-

ber of registration methods with various merits and limitations. Basically we use image

registration for the following reasons:

• To combine information from multiple modalities. The two images might be acquired

with the same sensors (intramodality) or with different sensors (intermodality).

• To monitor changes in size, shape or image intensity over time.

• To relate preoperative images and surgical plans to the physical reality of the patient

in the operating room during image-guided surgery or in the treatment stage during

radiotherapy.

• To relate an individual anatomy to a standardized atlas.

Now we give a more formal definition of image registration based on [19].

We name the two images which have to be aligned the moving image IM (x) and the

fixed image IF (x). The spatial coordinates x belong to a domain Ω of a certain dimension

d ∈ N.

IF (x) : ΩF → R, ΩF ⊂ Rd (2.1)

IM (x) : ΩM → R, ΩM ⊂ Rd (2.2)

The goal of the registration process is to find a spatial transformation ϕ(xF ) : ΩF →
ΩM . This spatial transformation ϕ(xF ) needs to minimize the dissimilarity between the

fixed image IF (x) and the transformed moving image IM (ϕ(x)). With a distance measure

D we can formulate the registration process as minimization problem such as finding the

transformation ϕ(x) which minimizes the distance measure D between the fixed image

IF (x) and the transformed moving image IM (ϕ(x)).

In general there does not exist a direct solution for registration problems therefore

iterative optimization schemes are used.

2.2 Rigid and Similarity Transformation

The basic transformations are translation T and rotation R. Each of them has three

degrees of freedom in 3D-Space. Rigid transformations consist only of translation T and
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rotation R. A similarity transformation has additionally to translation T and rotation R a

scale parameter s which gives an additional degree of freedom in case of isotropic scaling.

In total a similarity transform has seven degrees of freedom, three for translation T , three

for rotation R and one for scaling s.

2.2.1 Feature-Based Methods

Feature-Based methods use specific structures which have to be extracted from the data.

These structures can be anatomical or artificial markers. We divide feature-based regis-

tration methods in two main categories: the point-based methods and the surface-based

methods.

The Procrustes alignment [13] is a point-based method which is able to estimate the

rigid or affine transformation parameters between two points sets based on corresponding

points pairs.

A common method for surface-based methods is the Iterative Closest Point (ICP) algo-

rithm [3]. Correspondences between the two point sets representing surfaces are unknown

a-priori which makes registration a difficult task. Two point sets are aligned by first iden-

tifying for each point of one point set the closest point in the other points set and take

this as a correspondence. Second, we calculate a transformation based on the found cor-

respondences. We apply the transformation to the first point set before the next iteration

starts. The method stops when a distance threshold is reached. A drawback of the ICP

algorithm is the fact that the algorithm generally reaches a local minimum. In [17] they

present a ICP algorithm which conducts an exhaustive search to find a global minimum.

A more detailed description of ICP can be found in Chapter 4 Section 4.4. In [26] they

use rigid registration to register a CAD mesh model of a part with a CT volumetric model

of assembly including that part. They extract the 3D-Mesh of the volumetric data and

finally apply the ICP algorithm. They do not use the whole surface but extract edge

features with 2D edge and 2D corner detection algorithms. The method is faster than

typical ICP but less robust if the initial position of the source mesh is far from the target.

2.2.2 Intensity Based Methods

Intensity based methods do not extract features but use the intensities of the whole data.

Drawback of those methods is often the computational effort since they work on the whole

data. Due to this the solution is typically obtained by an iterative optimization process.

In this work we do not use intensity based methods since we deal with surface based data.
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2.3 Nonlinear Registration

In many applications a rigid or affine transformation is not sufficient therefore a nonlinear

transformation is required i.e. the registration of abdominal images which is changed due

to heart-beat or breathing.

In [8] they use a general-purpose nonlinear optimization to register 2D and 3D-Point

sets instead of the ICP algorithm. The method can be enhanced by incorporating robust

estimation without loss in speed which is an advantage over ICP.

There are intensity based methods as well but the optimization process is more complex

due to the large number of unknowns. An example is optical flow estimation formulated

in a variational setting.

2.4 Models

As a matter of fact it is often necessary to fit data to a model. The model may be static but

a modifiable model is preferable. The principal component analysis (PCA) is a statistical

approach to create a model.

PCA is a mathematical procedure in which a set of observations of possibly correlated

variables is converted into a set of values of uncorrelated variables called principal com-

ponents. By changing the principal components and back transformation we can generate

new data. The principal components are typically ordered descending by the correspond-

ing variance. In many cases PCA is used to reduce the dimensionality by omitting prin-

cipal components with a variance below a threshold. The resulting error of the original

and the reduced back transformed data depends on the omitted variance of the principal

components. In [27] more detailed information on PCA can be found. In the context

of models PCA is used to create statistical models. In this context observations are the

points of aligned meshes. By altering the principal components and back transformation

new meshes can be created.

In [25] they use the ICP scheme to non-rigidly fit a morphable template mesh to a

point cloud. The fitting is a minimization by iteratively estimating the non-rigid shape

and the rigid posture of the template mesh. The morphable shape is modeled as a single

PCA model or as multiple PCA models for individual regions.
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2.5 Pose Estimation

The pose estimation is the problem of finding the pose of the 3D-Object with respect to

a camera in which the 2D-Image was taken. We assume that the 2D-Image is an image

of the 3D-Object. There are numerous solutions for the pose estimation problem, [11]

gives an overview on them.

Basically there are three main categories:

1. The analytic or geometric methods where the pose transformation is calculated from

a set of equations which relate the 3D-Coordinates of the points with their 2D-Image

coordinates. The POSIT algorithm from [5] belongs to this category.

2. Genetic algorithm methods are robust especially when the images are not perfectly

calibrated. The pose represents the genetic representation and the projection error

is used as the fitness function. In [29] they use a genetic algorithm to estimate the

pose. A drawback of genetic methods is the increased runtime.

3. Learning based methods require a database of the object in different known poses

during the learning phase of the system. A new image is matched against the system

to estimate the pose. In [20] they use shape context as a descriptor of the images

and Histograms of Oriented Gradients HOG are used in [22] to estimate the posture.

If more information is available other methods to estimate shape and posture can be used

like structured light, photometric stereo or multiple cameras. In [1] they show a way

to estimate shape and posture from multi-camera silhouettes. Other methods can track

a human figure over a video sequence. With known initial configuration of the human

body they track a human figure in [15]. In [23] walking pedestrians are tracked which

constrains the posture on walking. Pfinder from [30] is able to track a human figure

without estimating posture.

In [12] they optimize posture and body shape of a statistical 3D-Model based on

silhouette, edge distance and shading. They initialize the method with manually selected

joint positions. This approach is very laborious and computationally demanding and

therefore not suited for our problem.

The majority of the methods assume certain knowledge of the posture therefore only

the pose of the object is estimated. In [16] the posture is estimated because of known

locations of points on the head and on body joints. Also the lengths of the body segments
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have to be known. A drawback of this method is the large number of required feature

points. At least six feature points on the head are required so this method is not applicable

for images where the head is not visible.
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In this Chapter we describe the process of finding a suitable reference model. The

reference model is an integral part of this work therefore it is important which model we

select. In the beginning we come up with several potential options for the reference models.

The first option was to take a rigid human 3D-Model. This approach has some serious

drawbacks, for instance all people do not look the same. Therefore a fixed 3D-Model has

very little expressiveness and there is a major difference between 3D-Model and real world

data. The next idea was to take a set of 3D-Models to meet the variability of human

body shape. This seemed practicable but the use of a set of 3D-Models implies that every

patient is measured in the same posture as the 3D-Model because otherwise the difference

between 3D-Model and real world data increases again. Furthermore, a large number

of 3D-Models are needed to cope with variations in posture and body shape. Finally we

decided that a configurable model where both appearance and posture are modifiable with

parameters is needed.

11
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A more practical requirement for the model is its availability. The best model is of no

use if we cannot obtain it.

Section 3.1 describes the reference model selection process in detail. In the following

Section 3.2 we describe the chosen 3D-Model.

3.1 Finding a model

After research work we found two possible candidates: the SCAPE method (Shape Com-

pletion and Animation for People) from [7] and the MakeHuman Projecti. These two

are very different from each other; SCAPE is completely based on 3D-Scans whereas

MakeHuman is based on an artificially created mesh which is modified to create universal

characters.

3.1.1 SCAPE (Shape Completion and Animation for People)

The SCAPE method is a data-driven method for building a human shape model that

accounts for different body shapes, posture and non-rigid deformations due to articulation.

The method consists of a pose deformation model and a body shape deformation model

which together builds the SCAPE model.

At first a set of scans of a single person in different poses is needed (an example set

can be seen in Figure 3.1). With those scans the pose deformation model is learned. This

pose deformation model derives the non-rigid surface deformation as a function of the

pose of the articulated skeleton. Hence a pose is parameterized by a set of rigid body part

rotations.

After the pose deformation model is learned, scans of different people in different poses

are used to learn the body shape model. The body shape deformation model encodes the

variability due to body shape across different individuals. A low-dimensional statistical

model of body shape deformations is learned using principal component analysis (PCA).

An example of the first principal components from the body shape model can be seen in

Figure 3.2.

The two models are combined to produce 3D-Surface models with realistic muscle

deformation for different people in different poses, when neither appears in the training

set. The SCAPE model is focused on representing muscle deformations resulting from

ihttp://www.makehuman.org
iiihttps://graphics.soe.ucsc.edu/private/data/SCAPE/

http://www.makehuman.org
https://graphics.soe.ucsc.edu/private/data/SCAPE/
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Figure 3.1: Example set of 3D-Scans used to learn the pose model. The image is taken
from the SCAPE body shape database webpageiii.

Figure 3.2: The image shows the first principal components in the space of body shape
deformations. Image from [7].

articulated body motion. Deformations resulting from other factors are not encoded. One

such factor is deformation resulting from pure muscle activity.

As the name SCAPE implies the purpose of the method is shape completion. This

means generating a complete surface mesh from a limited set of markers specifying the

target shape. An application of shape completion is partial view completion and motion

capture animation. Additional information can be found at the project webpageiv.

SCAPE is completely data driven and therefore requires scans of people. It is possible

ivhttp://robotics.stanford.edu/~drago/Projects/scape/scape.html

http://robotics.stanford.edu/~drago/Projects/scape/scape.html
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to purchase a database of scans like the CAESAR databasev to learn a SCAPE model.

The CAESAR database contains anthropometric variability of men and women with ages

18-65. People were chosen to ensure samples for various weights, ethnic groups, gender,

geographic regions and socio-economic status. But in order to get a model for people

younger than 18 we need scans from them as well.

3.1.2 MakeHuman

The intention of the MakeHuman project was to provide a tool for game developers and

animators to create a human mesh model so they do not need to create human charac-

ters from scratch. The principal aim of the MakeHuman project is to develop an open

source application capable of realistically modelling a very wide variety of human anatom-

ical forms in the full range of natural human poses from a single universal mesh. With

MakeHuman it is possible to generate a realistic character in a few minutes.

The humanoid mesh of MakeHuman can be parametrically manipulated and deformed

in order to represent alternative anatomical characteristics. Also the posture of the mesh

can be parametrically manipulated with respect to a common structural skeleton. The

software is designed for real-time manipulation and real-time visualizations, therefore it

needs to be efficient. Because of that the aim was to create a simplified and optimized

mesh on which deformation can be realistically applied while maintaining a low polygon

count.

With the current version MakeHuman 1.0 Alpha5vi it is possible to create different

characters but only in the reference posture. MakeHuman 1.0 Alpha5 has not the ability

to change the posture of the human mesh. Therefore we use MakeHuman 0.91 Release

Candidate which was published in December 2007 and incorporates all required function-

alities. In Figure 3.3 we can see a screenshot of MakeHuman 0.91 RC. The main differences

of the current version MakeHuman 1.0 Alpha5 in comparison to MakeHuman 0.91 RC are

the new GUI and a new mesh with improved topology but without ability to change the

posture of the human mesh. Furthermore MakeHuman 1.0 uses a C/OpenGL core appli-

cation and the user functionality is implemented in Python whereas MakeHuman 0.91 RC

is completely written in C++/OpenGL.

MakeHuman is released under an Open Source Licence (GPL3.0) and available for

Windows, Mac OS X and Linux. More detailed information can be found on the project

vhttp://store.sae.org/caesar/
vihttp://sites.google.com/site/makehumandocs/road-map, State of 1.10.2010

http://store.sae.org/caesar/
http://sites.google.com/site/makehumandocs/road-map
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webpage vii.

Modifications of the mesh are performed by deforming the mesh rather than altering

its topology. The possibility to manipulate the base mesh of the program arises from so

called body and pose modifiers. Every modifier defines a certain manipulation like size for

body modifiers or bend of an elbow for pose modifiers. A considerable number of mesh

deformation targets have been created by artists to provide a large number of realistic

starting points to model particular ethnic, gender, age and body mass figures.

Figure 3.3: Screenshot of MakeHuman 0.91 RC after startup.

3.1.3 SCAPE vs. MakeHuman

The main differences between SCAPE and MakeHuman are:

• SCAPE is based on real-life data whereas MakeHuman uses an artificial mesh.
viihttp://makehuman.blogspot.com/

http://makehuman.blogspot.com/
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• The expressiveness of the SCAPE model depends on the used 3D-Scans and for

MakeHuman on its modifiers.

In the end we chose MakeHuman because right from the start it is possible to create

meshes with a wide variety of body shapes and poses. The included modifiers allow us to

create meshes of different people between ages 10y and 90y in different poses. In order to

have the same variety with the SCAPE model a large database of 3D-Scans is necessary.

For example in [12] they used scans from over 1000 men and 1000 women to learn their

SCAPE model. It costs a lot of resources to acquire such a database either by buying or

scanning.

3.2 MakeHuman 0.91 RC

The MakeHuman 0.91 RC program consists of three main parts: the GUI mhgui-0.2,

the Animorph package animorph-0.3 and the modifier data. We do not discuss the GUI

any further since we do not use it so we are more interested in the functionality of the

Animorph package and in the modifier data.

Figure 3.4: Illustration of the possibilities of the Animorph package. The markers de-
scribed in Section 3.8 are shown.
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3.2.1 Animorph package

The Animorph package contains the whole functionality to manipulate and maintain a

mesh. No other special libraries are needed, just the standard C++ libraries. We use

the Animorph package as it is, just with minor changes mostly due to operation system

incompatibilities.

3.3 MakeHuman Data

The real power to create and manipulate a mesh arises from a set of different categories

of modifier data files which are:

• base files containing initial information about the mesh

• pose modifier files giving information on how to perform changes of a specific joint

• body modifier files providing data to deform the mesh according to global body

shape parameters

• body detail modifier files holding information on how to deform specific body

parts

• body settings files store data of the applied pose or body / body detail modifiers

The whole data directory of the package consists of almost 3000 files. We describe a

selection of the modifiers and files for each of the categories from above in the Appendix

Section C.1.

3.4 Pose modifier

Pose modifier define how the mesh is affected by altering a joint parameter. There are

68 pose modifiers available. In Section C.3 of the Appendix we can see a body setting

of an example posture of MakeHuman. We will show how a pose modifier works on the

example of modifier group 200 left upper leg. As the name suggests 200 left upper leg is

the hip joint. The hip joint has more than one possible rotation. As one can try in a self-

experiment humans are able to lift a leg sideways as well as to the front. A pose modifier

group possesses a pose modifier for each rotation. In our example 200 left upper leg these

are:
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• ROT ADJUST1, twist the leg

• ROT ADJUST2, little sideways adjustment

• ROT BASE1, lift leg sideways

• ROT BASE2, lift leg to the front

• ROT BASE3, lift leg a bit sideway and a bit to the front

Each of the pose modifiers can contain several PoseRotations and PoseTranslations (See

Figure 3.6).

ROT BASE3 from our example possesses six files:

1. 00 Y LIMB LUPPERLEG.rot

2. 00 Y LIMB LUPPERLEG.rot.info

3. 00 Y LIMB LUPPERLEG.target

4. 00 Y LIMB LUPPERLEG.target.info

5. 01 X LIMB LUPPERLEG.rot

6. 01 X LIMB LUPPERLEG.rot.info

That means we have two PoseRotations and one PoseTranslation for this pose modifier.

An example of ROT BASE3 with a rotation angle of 70◦ can be seen in Figure 3.5.

3.5 Body modifier

Body and body detail modifier consist only of PoseTranslations which denotes they contain

only translation. We distinguish between two types of body shape modifiers. A body

modifier works on the whole mesh at once whereas a body detail modifier influences only

parts of the mesh. The latter is described in Section 3.5.1.

Now we are going to show how the body modifiers for the whole mesh are selected.

We call a selected set of body modifiers a body setting. Section C.2 of the Appendix

shows a body setting of an example character of MakeHuman. Within MakeHuman eight

parameters are used to define the global body shape. It is possible to choose the body

modifiers without the scheme of the eight parameters provided by MakeHuman but this

scheme proved to give good result. Here are the eight parameters:
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Figure 3.5: Figure of the base mesh with applied pose modifier ROT BASE3 of pose
modifier group 200 left upper leg with rotation angle of 70◦.

1. Age 10-90

2. Sex male/female

3. Muscle skinny/big muscle

4. Weight thin/fat

5. Breast Size small/big

6. Breast Shape cone/sphere

7. Body Shape peer shape / V shape

8. Body Size small/tall

Based on these eight parameters a set of body modifiers is selected. The selection of the

body modifiers from the eight parameters is done in the following way:
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Figure 3.6: Hierarchical schemata of pose modifier 200 left upper leg with all rotation
subgroups and their corresponding PoseRotations and PoseTranslations.
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1. Step 1 Age and Sex parameters specify which body modifiers from the age category

are selected.

2. Step 2 Based on the selected modifiers from step 1 and with parameters Muscle

and Weight the body mass and the body shape modifiers were selected.

3. Step 3 With the selection from the former steps and with parameters Breast Shape

and Size the body modifiers for Breast are selected.

4. Step 4 The Body Shape and the Body Size body modifiers are selected only because

of the Body Shape and Size parameters.

For example we like to create the following model: 30year female, big muscle, thin, small

cone shape breast and a tall V shape body. This will lead us to the following body

setting:

ages/female 30.target,1

muscleSize/female 30 skinny muscle.target,1

breast/female 30 skinny muscle sphere little.target,1

shapes/longilinear vshape.target,1

The mesh is created in a straight forward procedure, we use the four Pose-

Translations to alter the mesh. But what if we want to create this model: 40year male,

normal muscle, average weight, normal cone shape breast and a medium sized a bit

V shaped body. We do not have the exact body modifiers for this case like before.

Therefore we use a linear combination of the available modifiers, for instance to create a

40year old man we combine body modifiers 30year male and 50year male.

The BodySettings of the 40year old man look like this:

ages/male 30.target,0.5

ages/male 50.target,0.5

muscleSize/male 30 big muscle.target,0.122944

muscleSize/male 30 big nomuscle.target,0.135214

muscleSize/male 30 skinny muscle.target,0.132878

muscleSize/male 30 skinny nomuscle.target,0.145537

muscleSize/male 50 big muscle.target,0.145298

muscleSize/male 50 big nomuscle.target,0.159798
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muscleSize/male 50 skinny muscle.target,0.157038

muscleSize/male 50 skinny nomuscle.target,0.171998

shapes/brevilinear peershape.target,0.0133096

shapes/brevilinear vshape.target,0.400855

shapes/longilinear peershape.target,0.0840619

shapes/longilinear vshape.target,0.526334

We can see that not only the age modifiers are combined but the other mod-

ifiers as well. The value of each body modifier is calculated because of the distance from

the given parameter to the body modifier. For instance to create the 40year old man we

combine weight male 30.target and male 50.target each with 0.5. Body modifiers for sex

can be combined as well since not every man has broad shoulders and not every woman

has slim waists as the body modifiers state. Because of the use of linear combinations we

have a wide range of possible models.

3.5.1 Body details modifier

Body details modifiers influence only parts of the mesh. For instance it is possible to

alter the length of the upper arms separately from the rest of the mesh. The body details

modifiers are grouped by the part they modify for example all body detail modifier for

the nose are in the nose group.

3.6 How to alter the model

Now that we have seen how the parts look like we put them altogether to work. At first

we need to set up a mesh. To do this the instance of the Animorph mesh needs to load

the available base files, pose modifiers body modifiers and body detail modifiers. After

that a basic mesh without any applied modifiers is available.

To apply modifiers to the mesh there are two important functions, doMorph for body

and body detail modifiers and doPose for pose modifiers. Both functions require the name

of a modifier and a value.

3.6.1 doMorph

The doMorph function applies body and body detail modifiers to the mesh. The function

requires a value which is a number that must be within the limits [0, 1]; we call this number
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morph value.

Based on the information of the PoseTranslation file associated with the modifier we

can alter the mesh. Each vertex v specified in the file is transformed with the belonging

translation vector t and the morph value mnew according to the following equation:
vx

vy

vz

 =


vx

vy

vz

+


tx

ty

tz

 ∗ [mnew −mcurrent] (3.1)

It is necessary to use the difference (mnew −mcurrent) because if we have applied the same

modifier before, we just need to apply the difference between the current morph value

mcurrent and the new morph value mnew. Body and body detail modifiers can be applied

only when the model is in the initial posture, because all body and body detail modifiers

have been designed for the initial posture.

3.6.2 doPose

The doPose function applies pose modifiers to the mesh. The function requires the name

of the pose modifier and a value which is the angle of the rotation in degrees.

Since for a certain pose modifier multiple PoseRotations can be defined, we choose at

first the appropriate PoseRotations according to the angle and its corresponding Pose-

Translations. Every single PoseRotation is specified within certain limits and we select

the PoseRotations where the angle is within those limits.

The corresponding PoseTranslation is applied to deform the mesh before applying the

PoseRotation. This is done in a similar way as in Eq.(3.1) only with minor changes due

to the fact that doPose uses an angle instead of a morph value.

To apply a PoseRotation we need to calculate a rotation matrix R for each vertex v.

To calculate the rotation matrix R we need the affected axis and an angle. We get the

affected axis from the PoseRotation. The rotation angle is obtained by multiplying the

angle given to the function and the angle belonging to the vertex which we get from the

PoseRotation. We get the rotation center C from the PoseRotation file as well. This leads

us to the following equation:
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The order in which we must apply pose modifiers is important since matrix multipli-

cation is not commutative. The number in the name of each pose modifier group give us

the order by sorting them ascending. The reason for this order is the definition of the

pose modifiers. Each pose modifier was created based on the initial posture. If we use

the pose modifier of the lower arm before using the pose modifier of the hand, the defined

coordinate system of the hand joint is transformed with the pose modifier of the lower

arm, while the data in the files of the pose modifier of the hand is not. Due to that we do

not get a correct mesh. In practice there are functions like setPose to prevent this. This

function setPose resets the mesh to the initial posture and applies all used pose modifiers

in the right order.

3.7 Practical considerations

There are a few things one has to keep in mind when working with the Animorph package.

Body modifiers can only be applied when the model is in the initial posture. The mesh

saves its vertex data in multiple variables. It is necessary to keep in mind that some

functions like setPose reset the mesh to initial posture by overwriting the main vertex data

variable with a saved copy without posture. This is not a problem if we have ensured that

this copy contains the vertex data of the mesh with applied body and body detail modifiers.

Otherwise we just get the initial mesh with posture. To copy the vertex data there are

functions for different modes like poseMode, animationMode and bodyDetailsMode.

3.8 Marker

We need markers for the exact localization of indications. Markers or reference points are

structures of the human body which are radiologically and outwardly visible and verifiable.

For radiological examinations special markers are available which are sticked to the

patient before the examination. In the volumetric data the position of those markers

give us the exact location. Another possibility is that a radiologist identifies the marker

location. For images visual markers are sticked to the patient but with the same aim; to

allow us exact localization.

On the reference model we define the markers beforehand. In Figure 3.4 we can see

the reference model with different appearance and posture and with applied markers. A

complete list of the markers we use can be found in Section B.1 of the Appendix.
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In this chapter we show how to register volumetric data from CT or MR to the refer-

ence model from the previous Chapter 3. At first we extract the surface of the volumetric

data and create a 3D-Mesh from it. This is necessary since the reference model is a

3D-Mesh. The registration process is based on the surface. Furthermore only rigid trans-

formations are allowed, more specifically, we allow only rotation, translation and scaling

i.e. a similarity transformation.

Before we are able to apply registration techniques we need to generate a 3D-Mesh

from the volumetric data. At first we use region growing to extract the surface within

the volume. After that we use the Marching Cubes algorithm (Section 4.1) to create a

3D-Mesh. We call this 3D-Mesh of the volumetric data volume mesh.

From the Marching Cubes algorithm we get a highly detailed volume mesh in com-

parison to the reference model. Due to that we can simplify the volume mesh to speedup

computations. We use a tool called tridecimator which is built with VCG Libi. Detailed

information on mesh simplification can be found in Section 4.2.

ihttp://vcg.sourceforge.net/index.php/Main_Page
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Figure 4.1: Pipeline of the volume to mesh registration process. At first we create a mesh
from the volume data which we register on the reference model.

For instance from volumetric data which contains the body from knee to hip with

resolutions x = 1.11607, y = 1.11607, z = 6 we get a mesh with 95234 vertices and 188122

faces. The same body area of the reference model consists of around 749 vertices and 1423

faces. After simplification the volume mesh consists of 1940 vertices and 2997 faces.

In a first step we calculate an initial transformation based on the correspondences

between the markers of the volume and the markers of the reference model. The marker

data of the volume needs to be provided in a text file. The initial transformation is

calculated with the Insight Segmentation and Registration Toolkit (ITK)ii which uses the

method described in Section 4.3.

This initial transformation is refined with the Iterative Closest Point (ICP) algorithm

from Section 4.4. The ICP algorithm is more accurate than the registration based on

markers since ICP uses all points of the volume mesh and the reference model to calculate

a transformation whereas the initial transformation is computed based on a small number

of markers. For example the initial transformation for the knee to hip volumetric data

is calculated based on 4 markers and the refined transformation used all 1940 vertices of

the volume mesh. We do not use ICP from the beginning because of the problem of local

minima. In order to get out of this local minimum the error has to rise again and ICP is

not able of letting the error rise again. In general the volume could be placed at random in

iihttp://www.itk.org

http://www.itk.org
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the reference coordinate system with some scale. The goal of the registration with markers

is to compute the scale and to place the volume on the correct position on the reference

model. After this first transformation the risk of the ICP algorithm of getting trapped in

a local minimum is low.

Since we cannot enforce that all volumetric data is acquired in the same posture we

have to adapt the reference model. We adapt the model with the techniques which are

described in Section 4.5.

After the volume to mesh registration process the volume mesh and the reference

model are in the best alignment. It may be necessary to execute ICP registration and pose

adaption more than once since after pose adaption ICP may find a better transformation.

4.1 Marching Cubes

The Marching Cubes algorithm from [18] is able to create a 3D-Triangle mesh from vol-

umetric data which consists of multiple slices. Each slice is an image of density values.

Lattice points in slice k are adjacent to lattice points in slice k + 1. The Marching Cubes

algorithm processes the volume by building cubes between four adjacent points in slice k

and four adjacent points in slice k + 1. Figure 4.2 illustrates how a cube is built.

Figure 4.2: The cube is formed between slice k and slice k + 1. Image from [21].

A cube consists of eight points. We assign one to a point if its voxel value v equals

or exceeds the value of the surface we are constructing and zero otherwise. Points with a

one are inside or on the surface whereas points with a zero are outside the surface. We

assume that the surface intersects edges where one point is outside and the other one is

inside the surface. There are eight points with two different states, this means that there

are 28 = 256 possible ways a surface could intersect the cube. By using symmetries of the

cubes it is possible to reduce from 256 to 14 cases. Figure 4.3 shows the triangulation of

the 14 cases. We create an index of each case based on the assigned number of the points.

Figure 4.4 illustrates how the case numbers are obtained. This case number is used as a
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pointer to a table which give us the triangles for a given cube configuration. The vertices

of the triangles are the surface intersections. The surface intersections are estimated

with subvertex accuracy by linear interpolation. In the final step of the Marching Cubes

algorithm for each vertex the unit normal is calculated. By doing this for each cube we

obtain a 3D-Mesh of the volume.

In summary, Marching Cubes creates a surface from a three-dimensional set of data

as follows:

1. Scan two slices and create a cube from four neighbours on one slice and four neigh-

bours on the next slice.

2. Calculate an index for the cube by comparing the eight density values at the cube

vertices with the surface constant.

3. Using the index, look up the list of edges from a precomputed table.

4. Using the densities at each edge vertex, find the surface edge intersection via linear

interpolation.

5. Calculate a unit normal at each cube vertex using central differences. Interpolate

the normal to each triangle vertex.

6. Output the triangle vertices and vertex normals.
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Figure 4.3: Triangulation of the possible configurations with respect to reflections and
symmetrical rotations. Image fromiii

Figure 4.4: Numbering scheme of the cube. Image fromiv

iiihttp://de.wikipedia.org/wiki/Marching_Cubes
ivhttp://users.polytech.unice.fr/~lingrand/MarchingCubes/algo.html

http://de.wikipedia.org/wiki/Marching_Cubes
http://users.polytech.unice.fr/~lingrand/MarchingCubes/algo.html
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4.2 Mesh simplification using quadric error metrics

The method is described in [10]. The algorithm is based on iterative contraction of vertex

pairs. This can be seen as a generalization of edge contraction.

The basic technique is pair contraction which is written as (v1, v2)→ v this denotes the

movement of vertices v1 and v2 to the new position v, the connection of all their incident

edges to v1 and the deletion of the vertex v2. Figure 4.5 illustrates pair contraction and

shows the two possibilities.

Beginning with an initial model Mn pair contractions are applied until the simplifica-

tion goal is satisfied and the final model Mg is produced.

Algorithms based only on edge contraction cannot join disconnected components but

pair contraction is able to merge individual components.

Possible candidate pairs for pair contraction are selected if either (v1, v2) is an edge or

distance ‖v1, v2‖ < t where t is a threshold parameter. The higher the threshold parameter

t becomes the more likely it is that separated portions of the model can be connected.

The candidate pairs need to be checked during the iterative process.

To select a pair for pair contraction it is necessary to calculate the cost of the con-

traction. The cost is defined for each vertex with a 4 × 4 matrix Q. The error at vertex

v = [vx, vy, vz, 1]T is defined as a quadratic form ∆ (v) = vTQv.

Summary of the steps of the method:

1. Compute the Q matrices for all the initial vertices.

2. Select all candidate pairs.

3. Compute the optimal contraction target v for each valid pair (v1, v2). The error

vTQ1 + Q2v of this target vertex becomes the cost of contracting that pair.

4. All pairs are sorted ascending according to their cost.

5. Iteratively remove the pair (v1, v2) of least cost by contracting the pair and update

the cost of all valid pairs.

4.3 Marker based Registration

We use the method described in [14] to recover the transformation between two different

Cartesian coordinate systems with given measurements of corresponding points. This

photogrammetric problem is also referred to as the problem of absolute orientation.
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(a) Edge contraction (b) Non-edge contraction

Figure 4.5: Illustration of pair contraction. In a) an edge is contracted to a single point.
In b) non-edge pairs are contracted hence unconnected sections of the model are joined.
(Images from [10])

The transformation between two Cartesian coordinate systems is modelled as a simi-

larity transformation, thus the transformation can be decomposed into a rotation, a trans-

lation and a scale. We have got seven degrees of freedom three for translation, three for

rotation and one for scaling. Three corresponding points provide nine constraints (three

for each correspondence) more than enough to determine the seven unknowns. Since mea-

surements are in general not exact, greater accuracy can be achieved by using more than

three points. Therefore, no longer the transformation which maps the points from one

coordinate system in the other system exactly is searched for, but the transformation

which minimizes the sum of squares of residual errors. The advantage of the closed form

solution to the least squares problem of absolute orientations is that it provides the best

possible transformation in a single step. Because of that no initial guess is necessary as

for iterative methods.

The input of the method are correspondences between points rl,i from one coordinate

system and points rr,i from the other coordinate system.

The translation is just the difference of the right centroid rr and the scaled and rotated

left centroid rl.

rl =
1

n

n∑
i=1

rl,i, rr =
1

n

n∑
i=1

rr,i (4.1)

r0 = rr − sR (rl) (4.2)

The scale is obtained based on the sums of the squares of the measurement vectors
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relative to their centroid by

s =

(
n∑
i=1

∥∥r′r,i∥∥2 / n∑
i=1

∥∥r′l,i∥∥2
)1/2

(4.3)

with

r′r,i = rr,i − rr, r′l,i = rl,i − rl (4.4)

Eq.(4.3) is derived based on a symmetrical expression for the error term. This allows us

to determine scale without the need to know the rotation.

Because of the derivation of scale it is necessary to find a rotation which maximizes

n∑
i=1

r′r,i ·R
(
r′l,i

)
(4.5)

Quaternions are used to find a solution for Eq.(4.5). Unit quaternion notation has

some advantages. For instance it is easier to enforce a quaternion to have unit magnitude

than ensure that a matrix is orthonormal. A quaternion is basically a vector with four

components which can be interpreted as scalar with an ordinary vector or as complex

number with three different imaginary parts. A symbol with a circle above it denotes a

quaternion.

q̊ = q0 + iqx + jqy + kqz (4.6)

Further information on quaternions are available in [14].

Eq.(4.5) can be rewritten as:

n∑
i=1

(
q̊r̊′l,iq̊

∗) · r̊′r,i =
n∑
i=1

(
q̊r̊′l,i

)
·
(̊
r′r,iq̊

)
= q̊TN q̊ (4.7)

where q̊∗ is the conjugate quaternion of q̊.

The unit quaternion that maximizes

q̊TN q̊ (4.8)

is the eigenvector corresponding to the most positive eigenvalue of the matrix N .

Matrix N is composed of elements of a 3 × 3 matrix M whose elements are sums of

products of coordinates measured in the right and left coordinate systems.
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M =

n∑
i=1

r′r,ir
′T
l,i =


Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

 (4.9)

The 4× 4 matrix N can be created as following:

N =


(Sxx + Syy + Szz) Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy (Sxx − Syy − Szz) Sxy − Syx Szx + Sxz

Szx − Sxz Sxy + Syx (−Sxx + Syy − Szz) Syz + Szy

Sxy − Syx Szx + Sxz Syz + Szy (−Sxx − Syy + Szz)


(4.10)

The eigenvalues of N can be found as solution of the fourth order polynomial λ which

is obtained by

det (N − λI) = 0 (4.11)

The corresponding eigenvector e̊m to the most positive eigenvalue λm is obtained by

[N − λmI] e̊m = 0 (4.12)

.

Summary of the algorithm:

1. Find the centroids rl and rr of the two sets of measurements of the left and right

coordinate system.

2. Subtract the centroids of the measurements such that from now on all measurements

are relative to the centroid.

3. Calculate matrix M with the measurements as in Eq.(4.9).

4. Build matrix N with the elements of matrix M as shown in Eq.(4.10).

5. Compute the eigenvalues of N with Eq.(4.11) and pick the largest positive eigenvalue

λm.

6. Obtain e̊m as the eigenvector corresponding to λm with Eq.(4.12). The quaternion

representing the rotation is the unit vector in the same direction.

7. Now the scale is calculated with Eq.(4.3).

8. With given scale and rotation we can compute the translation with Eq.(4.2).



34 Chapter 4. Volume to Mesh Registration

4.4 Iterative Closest Point

The iterative closest point (ICP) algorithm is a method to align 2D or 3D-Point sets. In

[3] the name ICP was introduced and the basic algorithm was presented. As input we have

a data point set P with points pi and a model point set M with points mi. In general

M can be any surface if it is possible to calculate the distance between the surface and a

point.

Our goal is to find the parameters of the transformation T in order to reduce the error

between P and M . We collect the parameters for transformation T in a vector a. For

3D-Registration we define

T3D (a;x) = T (α, β, γ, tx, ty, tz;x) = [R (α, β, γ)]x+


tx

ty

tz

 for x ∈ R2 (4.13)

where R (α, β, γ) is the rotation matrix built from α, β and γ.

The alignment is measured with the error function ε2 (|x|) which is typically defined

as the length of the vector

ε2 (|x|) = ‖x‖2 (4.14)

The correspondences are denoted by a function φ (i) which selects for each data point

pi the corresponding model point mφ(i). We establish correspondences between P and M

by looking for each point pi for the point mφ(i) which minimizes the error function. For

the error function in Eq.(4.15)

φ (i) = arg min
j
‖mj − pi‖2 (4.15)

The overall error E (a) between data P and model M is defined as

E (a) =
∑
i

min
j
ε2 (|mj − T (a; pi)|) (4.16)

In the basic form the algorithm consists of two steps. At the beginning we need an

initial estimate of a0. In each iteration a new estimate of the transformation parameters

ak is calculated which reduces the error E (a) between model and data point set.
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1. Step 1 Compute correspondences φ (i):

φ (i) = arg min
j
ε2 (|mj − T (ak; pi)|) (4.17)

2. Step 2 Update transformation, a:

ak+1 = arg min
a

∑
i

ε2 (|mj − T (ak; pi)|) (4.18)

For many common cases ak+1 can be calculated in a closed form [13] (for example

see Section 4.3).

Since the error E (a) is reduced in every iteration convergence to a local minimum is

guaranteed. We can use φ (i) for a termination criterion. If there is no change in φ (i)

then ak+1 does not change as well hence no further change is possible.

The ICP algorithm guarantees to find a local minimum but no global minimum. To

overcome the risk of getting caught in a local minimum we can take the best solution of

several initial transformation parameter a0. The basic ICP algorithm uses a least squares

norm Eq.(4.14) which is not robust to outliers. But by integration of a robust norm in

the ICP algorithm the closed solution of the transformation update step is lost.

In [8] they use nonlinear minimization in order to reduce the overall error E (a) between

data P and model M from Eq.(4.16) instead of the basic ICP algorithm. The advantage

of the method they describe is the increased robustness due to the use of robust statistics

without loss of speed. In [17] they present a ICP algorithm to find a global minimum

which has greater expense because the algorithm conducts an exhaustive search.

4.5 Adaption of Model

We do not assume that a volume was acquired in a certain posture therefore we need to

adapt the posture of the reference model to the posture of the volume. The adaption of

the model is essential because without adaption the distance between the reference model

and the volume would be not tolerable. Also we would face a problem with registration

because the transformation obtained between different postures would not be usable.

The adaption is divided in two main classes. First, the adaption based on markers and

secondly the adaption based on the whole mesh.
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4.5.1 Adaption based on markers

After the volume is registered to the reference model with markers we estimate the posture

in a first attempt. The marker based adaption is divided in three types which differ in the

number of markers they need and in the type of computation.

• Type 1 needs two markers, the affected axis and the name of the pose modifier.

We assume that markers M1 of the reference model and the volume are aligned.

Then we calculate the vector between the marker positions of marker M1 and marker

M2 for reference model and volume mesh which gives us two vectors vref and vvol.

See Figure 4.6 for an illustration. The two vectors are projected on xy, xz and

yz planes and angles for both vectors are calculated with the arctan function (see

Figure 4.7). Based on the given axis we compute the difference between the angles

of the according projection. The difference gives us the angle which we apply to the

specified pose modifier.

vref = Reference model
(
M1M2

)
vvol = Volume

(
M1M2

)

α =


arctan

(
vref (z)
vref (y)

)
− arctan

(
vvol(z)
vvol(y)

)
if x -axis

arctan
(
vref (z)
vref (x)

)
− arctan

(
vvol(z)
vvol(x)

)
if y-axis

arctan
(
vref (y)
vref (x)

)
− arctan

(
vvol(y)
vvol(x)

)
if z -axis

(4.19)

• Type 2 needs three markers and the name of the pose modifier.

We only measure the angle between the two vectors v1 = M1M2 and v2 = M1M3

for the markers of the reference model and for the markers of the volume. With the

vectors v1 and v2 we calculate the angle αref for the reference model and an angle

αvol for the volume.

v1 = M1M2

v2 = M1M3

α = arccos

(
v1 ∗ v2

|v1| ∗ |v2|

)
(4.20)

The difference between αref and αvol is then applied to the pose modifier. Figure 4.8

shows an illustration of the elbow joint. Type 2 is simpler than Type 1 and can only
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be used for certain joints where the possible angles are only positive or negative, for

instance the elbow joint.

• Type 3 needs one marker and the name of the pose modifier.

We assume that pose modifiers with a higher number are already aligned. This is

necessary since before we are able to adapt for example the knee joint we have to

adapt the hip joint. At first we select equally distributed angles in the range of

possible angles of the pose modifier. For each angle we change the posture of the

reference model and calculate the distance between the marker Mref of the reference

model and the marker Mvol of the volume. Around the angle with the smallest

distance we use a gradient descent method to obtain the best angle. The final angle

is applied to the pose modifier. Figure 4.8 illustrates the process.

Figure 4.6: The figure shows the vectors we use to estimate the angle for Type 1 adaption.
One vector is between two markers of the reference model and the second vector is between
the same two markers but on the volume.

Type 1 and Type 2 are just approximations since markers are on the skin and joints

are inside the body but we do calculations as if the joint was on the skin. Type 3 is not

affected by this problem but since it depends on the accuracy of a single marker it still

can be seen as approximation. Experiments have shown that these approximations are

sufficient as initialization to ICP.
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Figure 4.7: Type 1 projects both vectors on the xy, xz and yz plane and then calculates
the value of the pose modifier according to the given axis. The figure shows the projections
of the two vectors of Figure 4.6.

Figure 4.8: Here we see the vectors OE2rOK1r and OE2rOE6r for the reference model
and for the volume. Type 2 uses the two vectors between three markers and calculates
the angle between them. The difference between the angle of the reference model and the
angle of the volume gives us the value for the pose modifier.
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Figure 4.9: The Figure shows an example usage of Type 3. The distance is measured for
marker UE1 l for pose modifier 200 left upper leg/ROT BASE2. The adaption with type
3 calculates at first the distance for a number of sample points. After that we search for the
minimum distance around the sample point with the smallest distance. The corresponding
angle of the minimum distance is the sought value for the pose modifier.

4.5.2 Adaption based on the whole mesh

Adaption of the whole mesh uses an iterative approach. We assume that the correct angle

minimizes the distance between reference model and volume. The function needs only the

name of a pose modifier as parameter. The function measures the distance εk between

reference model and volume. After that we update the angle of the specified pose modifier

with the step size s and measure the distance again. This gives us εk+1. Based on the

difference between εk and εk+1 we decide how to change the step size s. If εk−εk+1 > 0 the

distance is decreasing we can go on like before. If εk − εk+1 < 0 the distance is increasing

we change direction and reduce the step size s. Figure 4.10 shows the curve on which we

are moving on.

A drawback of the adaption method is that it depends in which order we adapt the

pose modifiers. A different order gives us a different posture. The problem arises from the

fact that the pose modifiers of the reference model were define from outward to inward

and we have to adapt from inward to outward.

4.6 Images of example data

In this Section we show images from all steps of the image to mesh registration process.

After the volume mesh was created from volumetric data it is placed in the reference
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Figure 4.10: The figure shows the distance between the reference model and the volume
as a function of the angle.

coordinate system. The first Figure 4.11 shows the initial situation. Position and scale of

the volume mesh are arbitrary.

We begin the registration process with marker registration. Based on the markers we

calculate a transformation to place the volume mesh with an appropriate scale on the

reference model.

We refine the transformation with the ICP algorithm in order to get the best trans-

formation. Figure 4.12 shows the registration with markers and ICP.

In the final step we adjust the posture of the reference model. With the adaption

process we can reduce the distance between the volume and the reference model further.

Figure 4.12 shows the difference before and after adaption.
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Figure 4.11: The figure shows the initial situation of volume to mesh registration. The
mesh of the volume can be placed arbitrarily in the coordinate system of the reference
model with any scale.
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(a) Registration with markers (b) Registration with ICP

Figure 4.12: In a) we see the result of the registration process with markers. The volume
is placed roughly on the reference model; note that the transformation in this case is
computed based on only four markers. The image in b) shows the result of the ICP
registration. The transformation is calculated based on all points of the volume, in this
case nearly 2000.
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(a) Before adaption of the posture (b) After adaption of the posture

Figure 4.13: The figure shows the benefits of adjusting the posture of the reference model.
In a) we see the result after ICP registration but before adapting the posture and b) shows
the result of the adaption process. As we can see the distance between reference model
and volume has decreased.
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In this Chapter we investigate registration of image with markers to the reference

model from Chapter 3. Image to mesh registration is a sophisticated task because we

need to bring a 2D-Image in accordance with a 3D-Mesh. There exist various concepts to

reconstruct shape from images. For example shape from stereo or shape from motion. The

methods require more than one image. We are restricted to use one image. Furthermore

we keep the image acquisition process as simple as possible therefore we do not use a

sophisticated setup. In general the images are taken by forensic experts but we also want

to use images from other sources. For instance another source is a policeman who already

took pictures of injuries which might not be available anymore at the time the forensic

expert looks at the subject.

Because we also use existing images we cannot take advantage of camera calibration.

The benefit of a calibrated setup has to be investigated in future work.

In Chapter 4 we were able to calculate transformations based on the points of the 3D-

Volume and the 3D-Mesh. Now we have to deal with a 2D-Image instead of a 3D-Volume.

The goal is to find a rotation and a translation that brings the 3D-Mesh in accordance

with the 2D-Image. In Computer Vision this is called the 2D-3D pose estimation problem

which consists of estimating the relative position and orientation of a 3D-Object according

to a reference camera. Moreover we know that the image shows us an image of a human

but we do not know the posture of the human. Therefore we have to recover the posture

from the 2D-Image as well.

We have markers on our 3D-Mesh and specify the corresponding marker in the 2D-

Image. Based on the corresponding marker we will firstly engage the 2D-3D pose estima-

tion problem (Section 5.2) and secondly estimate the posture (Section 5.3). As final result

we calculate texture coordinates (Section 5.4) to apply the 2D-Image as a texture on the

3D-Mesh in the same position as shown in the 2D-Image.

Since scaled orthographic projection (SOP) is important for the algorithms in Section

5.2 and Section 5.3 we give at first a brief description in Section 5.1.

5.1 Scaled orthographic projection (SOP)

Scaled orthographic projection (SOP) is a way of representing a 3D-Object in a 2D-Image.

It is a type of parallel projection, where the view direction is orthogonal to the projection

plane. The projected 3D-Points are scaled after parallel projection with scale factor s.

The distance from the image plane has no influence on the size.

We can define a reference point M0 which has the same image m0 under SOP and
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perspective projection. Based on the reference point M0 the scale parameter s can be

defined as the ratio between focal length f and Z0, which is the distance between the

center of projection O and the reference point M0.

Figure 5.2: Perspective projection mi and scaled orthographic projection pi of point Mi

(Image from [6]).

If we assume that the depths Zi of different points Mi of the object coordinates do not

differ in a significant way, we can use scaled orthographic projection (SOP) as an approx-

imation of perspective projection. In other words there should be no strong perspective

event in the image.

Scaled orthographic projection of a point Mi:

x′i = fXi/Z0, y′i = fYi/Z0, (5.1)

Perspective projection of a point Mi:

xi = fXi/Zi, yi = fYi/Zi, (5.2)
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If all points Zi equal Z0 there would be no difference between SOP Eq. (5.1) and perspec-

tive projection Eq. (5.2).

In Figure 5.2 we can see the difference between SOP and perspective projection. The

reference point M0 has the same image m0 under SOP and perspective projection whereas

point Mi has image mi under perspective projection and image pi under SOP.

5.2 2D-3D pose estimation problem

Figure 5.3: An illustration of the 2D-3D pose estimation problem. The goal is to obtain
R and T with given 2D-Image and 3D-Model (Image from [24]).

In this Section we deal with the 2D-3D pose estimation problem. Figure 5.3 illustrates

this problem. Basically we estimate the rotation R and the translation t of a 3D-Model so

that the image of the reference camera equals the 2D-Image. Since we use markers we are

able to use an algorithm to solve the 2D-3D pose estimation problem which is based on

correspondences. We use an analytic formulation of the POSIT (Pose from Orthography

and Scaling with Iteration) algorithm from [6]. This analytic formulation is presented in

[5]. The main advantage of this analytic formulation is that due to the homogeneous form

it does not need to locate the image of the origin M0. In the following we describe the

POSIT algorithm in more detail.

5.2.1 Notation and Problem Definition

We have markers (M0,M1, . . . ,Mi, . . . ,Mn) on our 3D-Mesh which are located in the field

of view of the camera and corresponding images of the markers (m0,m1, . . . ,mi, . . . ,mn)
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in the 2D-Image. The object coordinate frame is (M0u,M0v,M0w). Coordinates of Mi

(Ui, Vi,Wi) and coordinates of its image mi (xi, yi) are known.

In the pinhole camera model we have a set of parameters, the center of projection O,

the distance between O and the image plane f and axes Ox, Oy pointing along the rows

and columns of the camera sensor and Oz pointing along the optical axis. The unit vectors

for these three axes are called i, j and k. This gives us the camera coordinate system.

To obtain the coordinates of an object Mi in the camera coordinate system we need

to multiply Mi with the rotation matrix R and add the translation vector T . By using

homogeneous coordinates we can compose R and T to the pose matrix P .

P =


R T

0 0 0 1

 =

iu iv iw Tx

ju jv jw Ty

ku kv kw Tz

0 0 0 1

=

P T
1

P T
2

P T
3

P T
4

(5.3)

The coordinates of Mi or vector M0Mi in the camera coordinate system can now be

calculated by simply multiplying Mi or vector M0Mi with P . This requires that Mi or

vector M0Mi is provided in homogeneous coordinates which is done by adding 1 as fourth

coordinate to Mi or vector M0Mi.

According to Eq.5.3 we name the rows of P , P1, P2, P3 and P4. P1 consists of the

coordinates iu, iv, iw, they are the first row of the rotation matrix R which is the x-axis

of the camera coordinate system expressed in the object coordinate system. Coordinates

ju, jv, jw of P2 are the y-axis of the camera coordinate system expressed in object coordi-

nate system (M0u,M0v,M0w). Vector k (ku, kv, kw) made from the first three elements

of P3 is the cross product of the vectors i = (iu, iv, iw) and j = (ju, jv, jw).

5.2.2 Fundamental Equations and POSIT

The fundamental equations relate the row vectors P1 and P2, the coordinates of the object

vector M0Mi and coordinates (xi, yi) of the perspective images mi from Mi.

M0Mi · I = x′i

M0Mi · J = y′i (5.4)
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with

I =
f

Tz
P1, J =

f

Tz
P2, (5.5)

x′i = xi (1 + εi) , y′i = yi (1 + εi) (5.6)

and

εi = M0Mi · P3/Tz − 1 (5.7)

The coordinates x′i and y′i are the scaled orthographic images pi from Mi (see 5.1). To

calculate εi we need P3 (Eq.(5.7)) which can be computed only after I and J have been

computed.

We get Eq.(5.7) by assuming that the projective projection (Eq.(5.2)) is related to

SOP (Eq: (5.1)) through εi. We relate the SOP of the x -coordinate Xi of Mi that is

x′i = fXi/Tz to the projective projection with Eq.(5.6). This leads to:

1

(1 + εi)

fXi

Tz
=

fXi

Zi
⇒ (1 + εi)Tz = Zi (5.8)

We obtain the z -coordinate Zi of Mi as the dot product M0Mi · P3. Therefore we can

write:

(1 + εi)Tz = M0Mi · P3 (5.9)

which leads to Eq.(5.7).

With a given εi we can solve the linear equation system provided by (Eq.(5.4)) to

obtain I and J . Once we know I and J we can compute P . From I we get R1 as

(I1, I2, I3). The norm of R1 is equal to f/Tz. Vector i is the normalized vector R1. We

get P1 by dividing I through the norm of R1 = f/Tz. With similar operations we obtain

j and P2 from J . With P1 and P2 we can compute P3 with k = i × j, Tz is computed

before. This algorithm to calculate one pose matrix P with a given εi is called POS (Pose

from Orthography and Scaling). The solution of POS is only an approximation, if εi is

not exact, but we can compute a better εi from a given solution. Applying POS and

calculating a better εi in turns is called POSIT (POS with Iterations [5]).

Initially we assume x′i = xi, and y′i = yi which implies εi = 0. With εi = 0 we assume

that points Mi and Pi from Figure 5.2 coincide. We iterate until current εi is close enough

to the εi from previous loop. Typically 4-5 iterations are sufficient.
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5.2.3 Solving POS Equation System

Within the iteration we have to solve Eq.(5.4) with a given εi and known coordinates of

Mi and mi. We can define a matrix A with the object points Mi

A =

U0 V0 W0 1
...

...
...

...

Ui Vi Wi 1
...

...
...

...

Un Vn Wn 1

(5.10)

to rewrite the equations in a more compact form:

AI = x′, AJ = y′ (5.11)

where x′ is a column vector with i -th coordinate equal to x′i.

There are four unknown coordinates in vectors I and J , therefore matrix A must have

at least rank 4 for the system to provide solutions. This requirement is satisfied with at

least four non coplanar object points; also corresponding image points of the object points

are required.

The solution of the equation system in a least squares sense are given by

I = Bx′, J = By′ (5.12)

where B is the pseudo inverse of matrix A. The pseudo inverse B is calculated either by

operation
[
ATA

]−1
AT or by decomposing matrix A by Singular Value Decomposition

(SVD). SVD has the advantage of giving diagnosis of the rank and condition of A as well

as numerical advantages. The pseudo inverse B can be precomputed, because it depends

only on the relative geometry of the object points.

5.2.4 Summary

This analytic formulation of the POSIT algorithm in homogeneous form allows us to find

the pose of an object based on corresponding points between object feature points and

image points without the need to locate the image of the origin.

Here are the steps of POSIT algorithm:

1. εi = best guess, or εi = 0 if no pose information is available
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2. Start of loop: Solve for I and J in the following system

M0Mi · I = x′i, M0Mi · J = y′i

with

x′i = xi (1 + εi) , y′i = yi (1 + εi)

3. From I, get

R1 = (I1, I2, I3) ,

f/Tz = |R1| ,

i = (Tz/f)R1,

P1 = (Tz/f) I

Similar operations yield j and P2 from J .

4. k = i × j, P3 = (ku, kv, kw, Tz) , εi = M0Mi · P3/Tz − 1

5. If the current εi is close enough to the εi from the previous loop, EXIT, else go to

step 2.

6. P1, P2, P3 along with P4 = (0, 0, 0, 1), are the four rows of the pose matrix P .

5.3 Estimation of Posture

We need to adapt the posture of our model in order to improve the accuracy. With the

3D-Position of the 2D-Marker we can use the methods from Section 4.5. To estimate the

3D-Position we use the method described in [28]. This method uses SOP (Section 5.1).

The method takes the foreshortening between each of the body segments in the model

and its image into account. In Figure 5.4 we see a line segment of known length l projected

onto the image under SOP.

The two end points are represented by (X1, Y1, Z1) and (X2, Y2, Z2); their images are

represented by (u1, v1) and (u2, v2). If we know the scale factor s, it would be easy to

compute the relative depth between the two endpoints with following equations.
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Figure 5.4: Projection of a line segment onto an image under SOP (Image from [28]).

l2 = (X1 −X2)
2 + (Y1 − Y2)2 + (Z1 − Z2)

2

(u1 − u2) = s (X1 −X2)

(v1 − v2) = s (Y1 − Y2)
dZ = (Z1 − Z2)

⇒ dZ =

√
l2 −

(
(u1 − u2)2 + (v1 − v2)2

)
/s2

(5.13)

For a given value of s there are still two distinct solutions possible. Either point 1 or

point 2 could have the smaller z -coordinate. We can obtain a lower bound on the scale

factor s since dZ cannot be a complex number and therefore the quantity under the square

root must be non-negative which leads to the following inequality:

s ≥

√(
(u1 − u2)2 + (v1 − v2)2

)
l

(5.14)

The scale parameter s directly affects the result. The larger s the greater the fore-

shortening of each segment and the more stretched the solution along the z -axis. Figure

5.5 shows this behaviour.

The relations can be extended to the case of a jointed mechanism; for example a

kinematic chain of four points and three line segments. By using Eq.(5.14) with every

line segment we can obtain an overall minimum scale s. Still we have the problem of the

ambiguities of dZ. In this example we get eight possible solutions for three line segments.

Therefore the user needs to specify which segment is closer.
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Figure 5.5: Impact of the scale factor s on the estimation. The scale is increasing from
left to right. Image from [28]

.

5.4 Texture Coordinates

The calculation of the texture coordinates is straight forward. At first we transform the

3D-Mesh with the rotation R and translation T found in Section 5.2. Then we determine

which points of the 3D-Mesh will be visible in the image. We take the dot product of the

camera view vector c with the normal ni of each point. A negative dot product denotes

that the normal vector points away from the camera, therefore the point can not be seen.

These points are ignored for further computation. For example if the image shows us the

front side of a person we cannot see the backside therefore we can omit the points of the

backside for further calculations. Normal vectors of the backside will give us a negative

dot product whereas the dot product with normal vectors of the front side is positive.

The remaining points are projected on the image plane with perspective projection.

Points which are outside the image limits are ignored because they are not visible in the

image. The remaining projected points are used as texture coordinates. Since we use the

Coin libraryi we need to make sure that the texture coordinates are within [0, 1].

5.5 Images of example data

We present a test case to show the image of the mesh registration process. The first Figure

5.6 shows us the input data. The input consists of an image with specified markers and

the reference model from Chapter 3.

The second Figure 5.7 shows the result of the image to mesh registration process. We

see the original image with the projected points of the reference model, which we use as

texture coordinates, and we see the reference model with the original image as texture.

ihttp://www.coin3d.org

http://www.coin3d.org
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(a) Image with markers

(b) Reference model

Figure 5.6: Initial state of image to mesh registration. In a) we see the image with specified
marker and b) shows us the initial reference model.
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(a) Image with Marker and texture coordinates

(b) Reference model with the image as texture

Figure 5.7: Result of image to mesh registration. In a) we see the image with marker and
texture coordinates as light blue dots and b) shows us the 3D-Model were the image is
applied as texture.
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Experiments
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We perform experiments for volume to mesh registration and for image to mesh reg-

istration. The experiments with volume to mesh registration are carried out with a volu-

metric data set in the analyze file format (*.hdr and *.img files). This data set contains

a human body from knee to hip with resolutions x = 1.11607, y = 1.11607, z = 6. In

addition to the volumetric data set we specify the marker positions within the volumetric

data set.

At first we investigate the influence of the mesh simplification step within the volume

to mesh registration process in Section 6.2.1. Therefore we vary the target number of faces

of the mesh simplification step while all other parameters and the marker positions stay

constant.

Secondly we explore the capture range of the ICP algorithm within the volume to

mesh registration process in Section 6.2.2. We add noise of different magnitude to the

marker positions while all other parameters remain constant. The capture range of the

ICP algorithm is the one over which the ICP algorithm converges to the same minimum

as without noise.

For experiments with image to mesh registration we use images in the JPEG File

Interchange format (*.jpg). We specify the marker positions within each image manually.

Then we investigate the impact of three error sources. First, we perform experiments

57
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to show the influence of noisy marker positions by adding noise of different magnitudes

to the marker positions within the image. Secondly we show the influence of the posture

by using images where the posture is different from the posture of the reference model.

Thirdly we explore the impact of perspective by using images with different perspective.

6.1 Compare Transformations

Both, volume to mesh registration and image to mesh registration, result in a transforma-

tion. Therefore we need to be able to compare transformations which consist of rotation,

translation and scale in a meaningful manner. For graphical comparison we transform a

regular tetrahedron (see Figure 6.1) with each transformation. The center of the untrans-

formed tetrahedron is at (0, 0, 0).

Figure 6.1: The base tetrahedron is transformed according to the given rotation, transla-
tion and scale.

We want to calculate an error value ε between the transformations. We compute the

rotation error εR between two rotations as the minimal angle between the two quaternions

representing each rotation. For the translation error εt we use the distance between the

two translation vectors. We use isometric scaling therefore we compute the scale error

εs as ratio between the two scale factors. The error value ε is calculated as weighted

sum of rotation error εR, translation error εt and scale error εs. Therefore we specify
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corresponding weights wR, wt and ws for each of the three error values. Eq.(6.1) shows

how we calculate the error value ε.

ε = wR ∗ εR + wt ∗ εt + ws ∗ εs (6.1)

with

wR = 90/10 wt = 1 ws = 10 (6.2)

The weights of Eq.(6.2) denote that a rotation of 90◦ equals a translation of 10 and a

translation of 1 equals a scale change of 10%.

6.2 Volume to Mesh Registration Experiments

6.2.1 Mesh Simplification

The reference mesh has in general a lower resolution than the output of the Marching

Cubes algorithm (Section 4.1). Therefore we investigate how much we can simplify the

mesh until the error is not tolerable. For example a difference of 5 cm is not tolerable. A

simpler mesh reduces the computational effort of the following steps but the result has to

be close to the result of the original mesh.

We simplify the mesh of the volume as shown in Section 4.2. We define the simpli-

fication factor sf between 0 and 1. The target number of faces is the product of the

simplification factor sf and the original number of faces.

After the Marching Cubes step we have a mesh with 95234 vertices and 188122 faces.

At first we create different meshes by reducing the number of faces of the volume mesh

with the simplification factors sf of Table 6.1. A selection of the meshes is shown in

Figure 6.2. Marker based registration depends only on the markers and not on the mesh

therefore marker based registration gives us the same transformation for every mesh. More

interesting is the registration with ICP (Section 4.4). Since ICP depends on the points

of the mesh we get a different transformation depending on the simplification factors sf .

We use the transformation of the original mesh as basis. The other transformations are

compared to this basis.

We can see the results of the experiment in Figure 6.3 and in Table 6.2. Based on

the result we can see that the error of a simplification factor sf of 1/128 is still tolerable.

With simplification factors sf smaller than 1/128 the error increases rapidly. We suspect
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Simplification Factor sf Number of Faces

1/1 188122

1/2 94061

1/4 47031

1/8 23515

1/16 11758

1/32 5879

1/64 2939

1/128 1470

1/256 735

1/512 367

1/1024 184

Table 6.1: Simplification Factors for the test volume.

Simplification
Factor sf

Rotation
Error

Translation
Error

Scale
Error

Weighted
Sum

1/1 0.000000 0.000000 0.000000 0.000000

1/2 0.820824 0.085293 0.016514 0.341636

1/4 0.783481 0.071310 0.007573 0.234094

1/8 0.750588 0.048350 0.003697 0.168721

1/16 0.550236 0.053482 0.002468 0.139301

1/32 0.695058 0.073364 0.004133 0.191927

1/64 0.795949 0.070860 0.001051 0.169806

1/128 0.782260 0.106230 0.000099 0.194139

1/256 0.814548 0.333537 0.022062 0.644662

1/512 3.155333 0.397813 0.032766 1.076069

1/1024 3.259726 0.407875 0.038479 1.154855

Table 6.2: Relation between mesh simplification factor and the difference of the resulting
transformation.

the increased error values at simplification factors sf at 1/2 and 1/4 arise from the fact

that the high resolution of the mesh causes the ICP algorithm to get trapped in a local

minimum.

With mesh simplification we can speed up the registration process but a too small

simplification factor sf gives us a mesh which cannot represent the original mesh good

enough to give satisfying results. The simplification factors sf has to be selected so that

the mesh has about the equal or greater resolution than the reference model in order to

get a good result. Based on this knowledge we use a simplification factor sf of 1/64 in

the experiments of Section 6.2.2.
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(a) 188122 faces, sf = 1/1 (b) 23515 faces, sf = 1/8

(c) 2939 faces, sf = 1/64 (d) 367 faces, sf = 1/512

Figure 6.2: The image shows the original mesh and reduced meshes with different simpli-
fication factors.
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(a) tetrahedron

(b) error

Figure 6.3: The figure shows the comparison of the resulting transformation of the mesh
simplification experiment. Each transformation is obtained from a volume with a different
simplification factor. As we can see there is no significant difference until the simplification
factor decreases under 1/128.
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6.2.2 ICP capture range

Since marker positions are not perfectly accurate we investigate the impact of inaccurate

marker positions on the result of volume to mesh registration. We assume that the ICP

algorithm has robustness to noise. This leads us to the question how much tolerance of

the marker position we have got until ICP cannot calculate the correct transformation.

We deactivate the calculation of a first estimate of the posture because of the different

estimated postures we cannot perform an objective comparison of the transformations.

First we calculate normally distributed random numbers between [−1, 1]. We add the

random numbers to the marker positions multiplied by a factor N . This factor N is the

maximal variation of the marker position in millimetre.

In this experiment we used the same volumetric data set as before which contains the

body from knee to hip. We added noise of different magnitudes to the marker positions.

Figure 6.4 displays all marker positions we have used in this experiment. The result of

the comparison of the transformation obtained for each factor N can be seen in Figure

6.5 and in Figure 6.6. Table 6.3 and Table 6.4 present the error values.

After marker registration there is a large difference between the transformations. The

error increases with increasing noise. Whereas after registration with ICP the error is

about ten times smaller than after marker registration. With the ICP algorithm we have

robustness against inaccurate marker positions but, nevertheless, more accurate marker

positions give better result.
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Result after marker registration

N Rotation Error Translation Error Scale Error Weighted Sum

10 1.577818 0.163456 0.025791 0.596677

10 0.964197 0.124938 0.029813 0.530201

10 1.452554 0.130405 0.018435 0.476149

10 1.455480 0.121373 0.014965 0.432747

10 1.282198 0.116281 0.017393 0.432680

20 1.827105 0.268523 0.006187 0.533407

20 1.873319 0.306805 0.067625 1.191203

20 1.748970 0.239011 0.037613 0.809469

20 2.138322 0.250056 0.049027 0.977918

20 3.726052 0.191777 0.007365 0.679432

30 6.202536 0.323094 0.019377 1.206036

30 4.818383 0.552186 0.073504 1.822606

30 2.281566 0.101149 0.041581 0.770462

30 1.484033 0.328976 0.094744 1.441309

30 4.514871 0.283748 0.011351 0.898909

40 5.295873 0.747185 0.137440 2.710013

40 2.067709 0.313200 0.008434 0.627284

40 4.678655 0.261945 0.015581 0.937610

40 7.386098 0.870024 0.117775 2.868457

40 3.250382 0.466167 0.060713 1.434451

50 5.272520 1.283192 0.305839 4.927422

50 8.932774 0.655299 0.132064 2.968471

50 10.763595 0.526612 0.090617 2.628734

50 6.647253 0.701616 0.101365 2.453851

50 6.760129 1.044667 0.175954 3.555331

Mean Values

10 1.346450 0.131290 0.021279 0.493691

20 2.262753 0.251234 0.033563 0.838286

30 3.860278 0.317831 0.048111 1.227864

40 4.535743 0.531704 0.067989 1.715563

50 7.675254 0.842277 0.161168 3.306762

Table 6.3: Result after marker registration. The error values refer to the transformation
without noise N = 0. The last column is the outcome of Eq.(6.2) for each row.
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Result after ICP registration

N Rotation Error Translation Error Scale Error Weighted Sum

10 0.187669 0.013682 0.000846 0.042992

10 0.132475 0.019911 0.004470 0.079328

10 0.203483 0.013086 0.000915 0.044848

10 0.102714 0.004384 0.000269 0.018484

10 0.057964 0.012969 0.002898 0.048394

20 0.214888 0.026502 0.005243 0.102807

20 0.313666 0.024809 0.002250 0.082157

20 0.221043 0.013892 0.001749 0.055941

20 0.126051 0.020338 0.004131 0.075652

20 0.194289 0.029370 0.006463 0.115587

30 0.228828 0.030679 0.006824 0.124349

30 0.897072 0.106778 0.017949 0.385942

30 0.170432 0.013426 0.001759 0.049957

30 0.155046 0.012180 0.001796 0.047368

30 0.846114 0.109351 0.009221 0.295571

40 0.351065 0.045728 0.002206 0.106793

40 0.228418 0.018386 0.003722 0.080981

40 0.962163 0.115971 0.013475 0.357631

40 0.222287 0.023212 0.004298 0.090896

40 0.225681 0.029611 0.005061 0.105301

50 0.897020 0.237397 0.017560 0.512669

50 0.214081 0.016142 0.001445 0.054377

50 0.427790 0.042784 0.008307 0.173387

50 0.259496 0.025929 0.003665 0.091411

50 0.454745 0.040978 0.003626 0.127763

Mean Values

10 0.136861 0.012806 0.001880 0.046809

20 0.213987 0.022982 0.003967 0.086429

30 0.459498 0.054483 0.007510 0.180637

40 0.397923 0.046582 0.005753 0.148320

50 0.450626 0.072646 0.006921 0.191921

Table 6.4: Result after ICP registration. The error values refer to the transformation
without noise N = 0. The last column is the outcome of Eq.(6.2) for each row.
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Figure 6.4: Here we can see all marker point sets we used in this experiment. The marker
point set without noise is coloured black.

6.3 Image to Mesh Registration

In this Section we perform experiments with image to mesh registration. In the figures of

this Section are images with light blue dots. These dots are the texture coordinates of the

reference model.

6.3.1 Noise

We assume that the POSIT algorithm incorporates robustness against noise like the ICP

algorithm since the marker locations are not perfectly accurate.

We created an image of the reference model therefore it is simple to locate the markers
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(a) tetrahedron after marker registration

(b) tetrahedron after ICP registration

Figure 6.5: The figure shows the transformed tetrahedrons for each marker after the marker
registration step in image a) and after the ICP registration step in image b). After marker
registration the tetrahedrons are scattered but after ICP registration they are clustered.
That denotes that the difference of the transformations after ICP registration is small.
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(a) weighted sum error after marker and ICP registration

(b) weighted sum error after ICP registration

Figure 6.6: Comparison of the transformations after marker registration and ICP regis-
tration. Both figures show the weighted sum error for the mean values for each factor N .
In image a) the weighted sum error after marker registration and ICP registration. Image
b) shows the weighted sum error after ICP registration at a larger scale. The error after
ICP registration is about ten times smaller.
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in the image. Based on this image we estimate the pose without noise; the result is used

as a reference. The noise consists of normal distributed random numbers between [−1, 1]

which we multiply with a maximal dislocation in pixels. We add the noise to the marker

positions, Figure 6.7 shows the noisy marker locations. Subsequently we estimate the pose

with the POSIT algorithm (Chapter 5).

Figure 6.8 shows us the comparison of the transformation and Figure 6.9 shows the

difference between the marker points of the image and the projected marker points of the

reference model.

Since the POSIT algorithm only depends on the marker points, noise directly affects

the result. Therefore the marker points have to be obtained with the highest possible

accuracy.

Figure 6.7: The figure shows the used test image and the different marker positions with
applied noise.
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(a) tetrahedron

(b) error

Figure 6.8: Comparison of the transformations after POSIT with different noise levels.
The noise level is defined as the highest possible displacement in pixel.
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Figure 6.9: The Figure shows us the distance between the selected markers and the pro-
jected markers depending on the noise level.

6.3.2 Posture

Posture has a large impact on the result. The aim of the experiments is to show the

influence of the posture.

In the current state the functionality to adapt the posture automatically is not reliable

enough therefore we adapted the posture manually.

We can try to use only markers which are not affected by posture. The POSIT algo-

rithm uses the available marker to estimate the transformation. The texture coordinates

are calculated from the reference model without adaption of the posture. As a result we

would not see the influenced parts on the reference model (see Figure 6.10). By simply

ignoring posture we get the solution in Figure 6.11. A transformation, which is calculated

with the POSIT algorithm between markers of the image with posture and markers of

the model without posture, is unusable. In Figure 6.12 we see the result with adapted

posture.
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(a) Image with Texture Coordinates

(b) Reference Model with Texture

Figure 6.10: In image a) there are no markers defined on the right leg therefore in the
result image b) the right leg is not visible.
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(a) Image with Texture Coordinates

(b) Reference Model with Texture

Figure 6.11: We define markers on both legs but without adapting the posture. The
POSIT Algorithm gives us a solution that is not useful.
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(a) Image with Texture Coordinates

(b) Reference Model with Texture

Figure 6.12: We have defined markers on both legs and adapted the posture therefore we
can see the image as texture on the reference model.
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6.3.3 Perspective

Perspective has a large influence on the result of image to mesh registration. Methods

of image to mesh registration use SOP (Section 5.1) and therefore have limits concerning

perspective distortion within an image. The effects of perspective can be seen in Figure

6.13. In order to get usable results it is necessary to avoid perspective distortion at image

acquisition.
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(a) Image with Texture Coordinates

(b) Reference Model with Texture

Figure 6.13: In image a) there is serious perspective distortion. The result image b) shows
the problems of perspective. Mainly the feet are affected but also the rest of the body is
imprecise.
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In this work we have shown a tool which incorporates the possibility to display vol-

umetric data from MRI, CT and image data in the same reference system. First, we

evaluated different reference models. Secondly we presented two registration processes;

one for volume to mesh registration and one for image to mesh registration. Volume to

mesh registration computes an initial transformation based on markers and refines the

transformation with the ICP algorithm. The experiments have shown that due to the ICP

algorithm the registration has a tolerance to measurement errors of the marker locations.

The image to mesh registration process uses the POSIT algorithm; here measurement

errors of the marker locations directly influence the result.

7.1 Goals and Drawbacks

A drawback of our method is that the appearance of the reference model has to be adjusted

manually according to the data. We tried to recover the appearance automatically but

the results were not feasible. The main reason for this was the fact that in general the

data covers the human body only partially.

The posture of the reference model can be adapted automatically for volume to mesh

registration but nevertheless some adjustments have to be done manually. For image to

mesh registration the entire posture has to be adapted manually.

Our goal was to create a tool which allows visualizing evidence from image data and
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evidence from MRI and CT data. Furthermore the tool was going to be used in correlation

studies which compare internal and external evidence with respect to their location.

For visualization tasks the precision is sufficient and the tool can be used in the current

version. As for the use in correlation studies the precision has to be increased.

7.2 Outlook

Future work will mainly concentrate on the following challenges:

• Improvement of the 2D-3D registration. In the current version we depend on

the POSIT algorithm therefore we have to investigate alternatives such as in [29] to

solve the pose estimation problem. Furthermore we have to evaluate the benefit of

the use of calibrated cameras to obtain the images.

• Usability. The tool will be used by physicians and other non technical personal,

therefore the user interface needs to be more simple and intuitive.

• A better reference model. The resolution of the current reference model is too

low in order to document smaller injuries. Furthermore we have to expand the

reference model in order to model children.

The work of this thesis will be continued in a cooperation between the Ludwig Boltz-

mann Institute of Clinical-Forensic Imaging (LBI-CFI) and the RISC Software GmbHi

which are the developers of BurnCase3D ii. BurnCase3D is a documentation software spe-

cialized on burns (see Figure 7.1). Within BurnCase3D they use a set of static 3D-Models

from infant to adult on which the user can mark the burns.

Within this cooperation the 3D-Models of BurnCase3D have to be integrated in a

new tool with the possibility to alter the posture of the 3D-Models. Furthermore the

functionality to mark burns on a model will be transferred to the new tool.

In the current state of development it is possible to alter the posture of a BurnCase3D

model based on a skeleton (See Figure 7.2).

ihttp://www.risc-software.at
iihttp://www.burncase.at

http://www.risc-software.at
http://www.burncase.at
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Figure 7.1: Features of BurnCase3D

Figure 7.2: Modification of a static BurnCase3D model based on a skeleton.





Appendix A

Used libraries

A.1 Used libraries and Tools

Lib/Tool URL Version

ITK http://www.itk.org/ 3.16

Coin http://www.coin3d.org 3.1.2

Quarter http://www.coin3d.org/lib/quarter 1.0.0

OpenCV http://opencv.willowgarage.com/ 1.0

Glew http://glew.sourceforge.net/ 1.5.2

Qt http://qt.nokia.com/ 4.6.2

coindesigner http://sourceforge.net/projects/coindesigner/ 2.0

Tridecimator http://vcg.sourceforge.net/index.php/Main_Page 1.0

CMake http://www.cmake.org 2.6
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Appendix B

Referencemodel

B.1 Reference marker position and name

Name Beschreibung Description

head (Kopf)

K1 Kopfspitze vertex
K2 zwischen den Augenbrauen between the eyebrows
K3 Kinnspitze chin point
K5 Schädel hinten scull back
K6 Nasenspitze tip of the nose
K8 r Ohrlmuschelspitze rechts auricles right
K9 r Ohrlaeppchen rechts earlobe right
K10 r Ohr Tragus rechts ear tragus right
K11 r Kieferwinkel rechts jaw angle right
K8 l Ohrmuschelspitze links tip of auricle left
K9 l Ohrlaeppchen links earlope left
K10 l Ohr Tragus links ear tragus left
K11 l Kieferwinkel links jaw angle left

Table B.1: List of the available markers of the head.
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Name Beschreibung Description

upper part of the body (Oberkörper)

OK1 r Schulterdach rechts socket (shoulder) right
OK1 l Schulterdach links socket (shoulder) left
OK2 7. Halswirbel Cervix 7. cervical vertebrae
OK3 Sternum - Brustbein sternum - breastbone
OK4 Schwertfortsatz xiphoid process

lower part of the body (Unterkörper)

UK1 r Beckenkamm rechts (vorne) iliac crest right (front)
UK2 r Becken hinten rechts pelvis rear right
UK1 l Beckenkamm links (vorne) iliac crest left (front)
UK2 l Becken hinten links pelvis rear left
UK3 Nabel navel
UK5 r Oberschenkelkopf rechts femoral head right
UK5 l Oberschenkelkopf links femoral head left
UK6 Steissbein coccyx

Table B.2: List of the available markers of the upper and lower body parts.

Name Beschreibung Description

upper extremity (Obere Extremiät)

OE1 r Ellbogen rechts elbow right
OE2 r Oberarmaussenseite oben rechts outside of upper arm top right
OE3 r Oberarmaussenseite unten

(narrisches Bein) rechts
outside of upper arm bottom
(nervus ulnaris) right

OE4 r Handgelenk innen rechts wrist inside right
OE5 r Handgelenk aussen rechts wrist outside right
OE6 r Daumenansatz rechts root of the thumb right
OE7 r Zeigefinger (zwei) rechts forefinger (two) right
OE8 r Mittelfinger (drei) rechts middle finger (three) right
OE9 r Ringfinger (vier) rechts ring finger (four) right
OE10 r Finger (fuenf) rechts finger (five) right
OE1 l Ellbogen links elbow left
OE2 l Oberarmaussenseite oben links outside of upper arm top left
OE3 l Oberarmaussenseite unten

(narrisches Bein) links
outside of upper arm bottom
(nervus ulnaris) left

OE4 l Handgelenk innen links wrist inside left
OE5 l Handgelenk aussen links wrist outside left
OE6 l Daumenansatz links root of the thumb left
OE7 l Zeigefinger (zwei) links forefinger (two) left
OE8 l Mittelfinger (drei) links middle finger (three) left
OE9 l Ringfinger (vier) links ring finger (four) left
OE10 l Finger (fuenf) links finger (five) left

Table B.3: List of the available markers of the upper extremities.
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Name Beschreibung Description

lower extremity (Untere Extemität)

UE1 r Aussenseite Oberschenkel rechts outside of thigh right
UE2 r Innenseite Oberschenkel rechts inside of thigh right
UE3 r Kniescheibe Patella rechts kneecap patella right
UE4 r Knöchel innen rechts ankle inside right
UE5 r Knöchel aussen rechts ankle outside right
UE6 r Kniekehle rechts hollow of the knee right
UE7 r Ferse rechts heel right
UE8 r Zehengrundgelenk grosse rechts metatarsophalangeal

articulation (large) right
UE9 r Zehengrundgelenk zweite rechts metatarsophalangeal

articulation second right
UE10 r Zehengrundgelenk dritte rechts metatarsophalangeal

articulation third right
UE11 r Zehengrundgelenk vierte rechts metatarsophalangeal

articulation fourth right
UE12 r Zehengrundgelenk fuenfte (kleine)

rechts
metatarsophalangeal articulation fifth
(small) right

UE1 l Aussenseite Oberschenkel links outside of thigh left
UE2 l Innenseite Oberschenkel links inside of thigh left
UE3 l Kniescheibe Patella links kneecap patella left
UE4 l Knöchel innen links ankle inside left
UE5 l Knöchel aussen links ankle outside left
UE6 l Kniekehle links hollow of the knee left
UE7 l Ferse links heel left
UE8 l Zehengrundgelenk grosse links metatarsophalangeal

articulation (large) left
UE9 l Zehengrundgelenk zweite links metatarsophalangeal

articulation second left
UE10 l Zehengrundgelenk dritte links metatarsophalangeal

articulation third left
UE11 l Zehengrundgelenk vierte links metatarsophalangeal

articulation fourth left
UE12 l Zehengrundgelenk fuenfte (kleine)

links
metatarsophalangeal
articulation fifth (small) left

Table B.4: List of the available markers of the lower extremities.
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Animorph

C.1 Animorph File Types

C.1.1 base files

The base files are named base.* and contain initial information about the mesh e.g. initial

vertex and face data.

The base.vertices file contains the position of all vertices. Coordinates of a vertex are

stored in one line divided by commas. This file type looks like this:

-1.062978, -7.877367, 0.998311

-0.905655, -7.875316, 1.043413

-0.922802, -7.940919, 1.026910
...

...
...

The base.faces file provides information which points define a face.

6126, 6259, 6258, 6127

6118, 6127, 6258, 6119

6255, 6254, 6257, 6256
...

...
...

...

Since the mesh is a quad mesh there are four entries in each line which denote the four

points that build a face.

The mesh consists of 18618 points which form 19282 quads. We are only interested in

the surface of the mesh but it contains a skeleton as well. We remove the skeleton from the
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3D-Mesh which we use for further calculations. It is not possible to remove the skeleton at

all because all modifiers are made for the 3D-Mesh with the skeleton. The 3D-Mesh of the

body surface consists of 9275 vertices and 9505 quads. The other base.* files contain data

like colour for each vertex or texture coordinates for a texture provided by MakeHuman.

C.1.2 PoseRotation files

PoseRotation files define how the mesh is affected by rotation. Each PoseRotation

consists of two files. A PoseRotatino file *.rot looks like this:

6878, 0.291815

6879, 0.291815

6887, 0.053244

6888, 0.194306

7115, 0.291815
...

...

The first number is an integer that specifies the affected vertex and the second number

is a rotation angle in radians for the affected vertex.

The other file ends with *.rot.info. This file contains important additional information

about the rotation. Here is an example of this file type:

12374,12375,12376,12447,12448,12449

X

0,120.0

The first line contains the center vertex numbers. The centroid of the vertices specified

by the center vertex numbers is the rotation center. In the second line we find the identifier

of the affected axis. The third line indicates the minimal and maximal angle for this

rotation. Further lines are ignored.

It is possible that more than one set of PoseRotation files for the same axis exist

because it is allowed to have multiple PoseRotation as long as the limits of the minimal

and maximal angle do not intersect. This is for example useful to specify a different

behaviour for positive and negative rotation angles.
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C.1.3 PoseTranslation files

PoseTranslation files define how the mesh is affected by translation. The filenames end

with *.target and look like this:

4882, 0.002938, 0.008136, 0.002436

4883, 0.001593, 0.007564, 0.002591

4884, 0.002706, 0.012340, 0.002079

4885, 0.003224, 0.010201, 0.000432

4886, 0.002024, 0.006040, -0.000367
...

...
...

...

The integer at the beginning of every line gives us the index of the affected vertex. The

other three float numbers in the line form together the translation vector for the vertex.

If PoseTranslation files are used in combination with pose modifiers there is an

additional *.target.info file for each PoseTranslation. For example:

1.243614,1.6552133,1.7787966

-30.0,0

The first line consists of three float values which build a vector of the original size.

The second line indicates minimal and maximal angle in the same way as for PoseRotation

files.

C.1.4 BodySetting files

BodySetting files are used to save the applied set of either body and body detail modifiers

or pose modifiers. An example of a BodySettings file for body and body detail modifiers

can be found in the Appendix in Section C.2 and an example of a BodySettings file for

pose modifiers in the Appendix in Section C.3.

BodySetting files end with *.bs a line consists of the name of the modifiers and the

according value.
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C.2 BodySettings Example hero1.bs

This is a list of all used body and body detail modifiers to create the MakeHuman character

hero1.

ages/male 30.target,0.770833

ages/male 50.target,0.229167

cheek/cheek001.target,0.35

chin jaw/chin jaw001.target,0.5

chin jaw/chin jaw020.target,0.21

chin jaw/chin quadrangular.target,0.72

eyes/eyes001.target,0.57

eyes/eyes004.target,1

eyes/eyes big.target,0.18

eyes/eyes close.target,0.06

forehead/forehead001.target,0.37

forehead/forehead005.target,0.

forehead/forehead concave.target,0.11

mouth/mouth001.target,1

muscleSize/male 30 big muscle.target,

0.360725

muscleSize/male 30 skinny muscle.target,

0.408822

muscleSize/male 50 big muscle.target,

0.107243

muscleSize/male 50 skinny muscle.target,

0.121542

neck/neck large.target,0.62

nose/nose005.target,1

nose/nose007.target,0.36

nose/nose027.target,0.53

nose/nose short.target,0.29

nose/nosebase001.target,0.56

nose/nosebase002.target,0.55

nose/nosebase003.target,1

shapes/brevilinear vshape.target,

0.037052

shapes/longilinear peershape.target,

0.0513034

shapes/longilinear vshape.target,

0.935255

C.3 BodySettings example dance1.bs

This is a list of all used pose modifiers to create the MakeHuman posture dance1.

020 right foot/ROT1,60

026 left footfinger 3 1/ROT1,26

028 left footfinger 2 1/ROT1,40

030 left footfinger 1 1/ROT1,54

040 left foot/ROT1,60

044 right forefinger 3/ROT1,23

045 right forefinger 2/ROT1,17

046 right forefinger 1/ROT1,28

047 right middlefinger 3/ROT1,32

048 right middlefinger 2/ROT1,39

049 right middlefinger 1/ROT1,33

050 right ringfinger 3/ROT1,35

051 right ringfinger 2/ROT1,57

052 right ringfinger 1/ROT1,44

053 right littlefinger 3/ROT1,55

054 right littlefinger 2/ROT1,41



C.3. BodySettings example dance1.bs 91

055 right littlefinger 1/ROT1,70

060 right hand/ROT1,-36

060 right hand/ROT3,50

066 left forefinger 1/ROT1,-35

069 left middlefinger 1/ROT1,-26

072 left ringfinger 1/ROT1,-18

073 left littlefinger 3/ROT1,8

074 left littlefinger 2/ROT1,14

075 left littlefinger 1/ROT1,6

080 left hand/ROT1,11

080 left hand/ROT3,26

100 right lower leg/ROT2,81

140 right lower arm/ROT1,18

180 right upper leg/ROT BASE2,-30

200 left upper leg/ROT BASE2,71

220 right upper arm/ROT ADJUST0,129

220 right upper arm/ROT ADJUST1,-5

220 right upper arm/ROT BASE6,-45

240 left upper arm/ROT BASE1,60

260 right collar/ROT3,-10

320 neck/ROT2,-2

360 torso/ROT1,-25

360 torso/ROT2,-90

360 torso/ROT3,28

380 pivot/ROT2,73
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