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Motivation

Establishing sparse sets of point correspondences between images is a fundamental task in
many computer vision pipelines:
- 3D reconstruction (Structure from Motion)
- SLAM (Simultaneous Localization And Mapping)
- Visual Localization
- Object detection
- Object tracking




Deep Network approach

With the recent developments of deep neural networks, multiple local features extraction
methods based on deep learning have been proposed in the past few years:

- LIFT [1] 2016

- HardNet [2] 2017

- SuperPoint [3] 2018
- R2D2 [4] 2019

- ASLFeat [5] 2020

- MD-Net [6] 2022

These approaches, in contrast with the hand-crafted classical methods, learn to find good
keypoints and descriptors from the data directly.

After the local features are extracted (keypoints + descriptors) from each image, the
descriptors are still commonly matched using the Mutual Nearest Neighbor strategy.



Classical approach vs Deep learning

Classic approaches: detect then describe Recent deep learning approaches: detect&describe
SIFT (1999), rootSIFT (2012), SURF (2006), ... SuperPoint (2018), R2D2 (2019), ASLFeat (2020), MD-Net (2022) ...
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Deep Network approach

While for image classification is clear what the predicted class should be (supervised training),
for the local feature extraction task there is not a clear definition of what a good keypoint is.
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Deep methods: MD-Net [6]

MD-Net learns to detect keypoints without requiring any GT keypoint.
The training relies on pairs of images with known pixel-to-pixel transformation.
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The network trains in 13h on a 1080Ti, consuming 710k images. Image from [6] 7




Deep methods: MD-Net detection losses

In order to find keypoints that are repeatable (they are detected again in the same spotin a
different image depicting the same scene) and well distributed in the image MD-Net employs
a combination of two detection losses:

Similarity loss: the detection heatmaps Peaky loss: encourages local peaks
should correspond
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Gy (D7) = 1 (1 f ~ ey )

where p is a 16x16px moving window



Deep methods: MD-Net peaky loss

Lpeay(D™) = 1 — (max D” — mean D”)
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Deep methods: MD-Net descriptors loss

Corresponding descriptors should be similar, and dissimilar from any other descriptor.
Anchor Positive Negative (red)

To achieve this, a set of anchor keypoints are randomly sampled g
from one image. The corresponding positives are obtained from a

second image using the known pixel-to-pixel transformation.

A set of non matching descriptors can be sampled randomly from
the second image.
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One commonly used loss is the Triplet loss, which takes an anchor-positive-negative triplet and
increase the anchor-positive score (dot product) while lowering the anchor-negative one.

| | | ]
[:Triplet = [m — S(f., f+) + S(f., f_)]+

The parameter m (e.g. 0.5) in this formulation sets the minimum margin we require from each triplet.
Each score S is a value between [-1,+1].

For each triplet, the negative can be chosen following different strategies. MD-Net samples the hardest
negatives (i.e. the one with the highest anchor-negative score).
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Deep methods: MD-Net triplet loss
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[05 -(1.0) + (-1.0) ] = 00
[05 -(08) + (02) ] = 00
[05 -(06) + (03) ] = 0.2
[05 -(02) + (06) ] = 009

Descriptor space 2D projection before and after training.
The positive got closer to the anchor, while all the
negatives has been pushed away.

[*]+ = max(0, *)

Perfect case, the positive score is 1.0 and the negative -1.0.

The difference between the positive and negative score is 0.6,
which is greater than our chosen margin. The loss is O.

Even if the positive score is greater than the negative one, the
difference is smaller than the margin. The loss is low.

The positive score is smaller than the negative one. This is a
wrong match! The loss is high.
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Performances comparison

HPatches is a common benchmark to evaluate local feature performances. It is composed by two image sets:

- I: static images with different lighting conditions
- Vv pictures from different viewpoints of planar scenes

COMPARISON ON HPATCHES

MMA 1 MS 1
@lpx [ @2p | @3px | @lpx | @2px | @3px
MD-2-Net (ours) | 0.316 | 0.600 | 0.722 | 0.171 | 0.313 | 0.393
, | R2D2[19] | 0.280 | 0.568 | 0.700 | 0.118 | 0.228 | 0.273 Mean Matching Accuracy: mean ratio between the

ASLFeat [20] | 0332 | 0.565 | 0.675 | 0.203 | 0.338 | 0.398
Upright-SIFT (7] | 0.313 | 0472 | 0.533 | 0.167 | 0.247 | 0277 number of correct matches and the total number of

MD-2-Net (ours) | 0.480 | 0.658 | 0.765 | 0.242 | 0.323 | 0.368 proposed matches
R2D2 [19] | 0.377 | 0.660 | 0.797 | 0.170 | 0.285 | 0.336
ASLFeat [20] | 0.469 | 0.664 | 0.774 | 0.290 | 0.398 | 0.456

Method

ASLFeat [20] 0.398 | 0.613 | 0.723 | 0.245 | 0.367 | 0.426
Upright-SIFT [7] | 0.327 | 0.473 | 0.531 | 0.164 | 0.232 | 0.258

Upright-SIFT [7] | 0.344 | 0475 | 0528 | 0.161 | 0.216 | 0.238 Matching Score: mean ratio between the number of
MD-2-Net (ours) | 0.398 | 0.630 | 0.743 | 0.206 | 0317 | 0.369 correct matches and the number of keypoints extracted
T ReD2[19] ] 0.326 1061271 0.747 1 0.143 1 0.255 | 0.304 at one image in the area shared with the other.
-
Q

All the deep methods outperform Upright-SIFT.

Upright-SIFT is the non-rotation invariant version which performs
better than the original SIFT algorithm in this benchmark. Table from [6] 12



Performances comparison

Image Matching Benchmark is a benchmark which evaluates local features for the stereo and
multiview pose recovery.

IMAGE MATCHING BENCHMARK - RESTRICTED KEYPOINTS 2048

Stereo Multiview Avg
Method NF | NIt | Rep@3px 1 | MS@3px 1| mAA@10° 1 [INM 1 | NL + | TL 1 | ATE | | mAA@10° 1 | mAA@I10°

£ | MD-2-net (ours) |2047.5 [ 233.0 [  0.396 0.792 0.455 238.6 | 1391.5 | 4.604 | 0.411 0.708 0.581
5| R2D2[19] |2048.0|20L5| 0429 0.746 0.390 2943 | 12259 | 4.280 | 0.478 0.640 0515
S| ASLfeat[20] |2042.6|1260 | 0431 0.749 0.337 157.5 | 1106.6 | 4.415 | 0.533 0.556 0.446
& | Upright-SIFT [7] | 1892.8 | 986 | 0.333 0.788 0.383 148.0 | 1165.7 | 4.118 | 0.524 0.555 0.469
2 | MD-2-net (ours) | 2048.0 | 175.5 |  0.039 0.027 0.542 2363 | 605.8 | 3.197 | 6.753 0.451 0.497
,;g R2D2 [19] | 2048.0 | 167.0 |  0.032 0.025 0.539 3389 | 526.0 |3.170 | 6.837 0.444 0491
S | ASLfeat [20] |2048.0 | 1105 |  0.059 0.029 0.401 217.1 | 5744 |3.036 | 6.414 0.400 0.403
& | Upright-SIFT [7] | 2048.0 | 119.8 |  0.060 0.027 0.414 157.3 | 433.3 | 2.989 | 5.666 0.361 0.387

The metrics in the table are Number of Features (NF), Number of Inlier matches (NI), Repeatability (Rep), Matching Score (MS), Number of inlier Matches filtered by
COLMAP, (NM), Number of triangulated Landmarks (NL), Track Length (TL), Absolute Trajectory Error (ATL), mean Average Accuracy (mAA) up to 10°.

Again, the deep methods outperform Upright-SIFT in most of the metrics, especially on the
Mean Average Accuracy.

Table from [6]
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Hand-crafted vs. Machine learned features
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