Robot Vision:
 Structure-from-Motion (SFM)

Prof. Friedrich Fraundorfer
SS 2024

Outline

- SfM concept
- SfM pipeline
- Image similarity using visual words
- Incremental geometry estimation
- Bundle adjustment

Structure-from-Motion (SfM) concept

Structure-from-Motion (SfM) concept

Initialize Motion ($\mathrm{P}_{1}, \mathrm{P}_{2}$ compatible with F)

Extend motion (compute pose through matches seen in 2 or more previous views)

Initialize Structure (minimize reprojection error)

Extend structure (Initialize new structure, refine existing structure)

Structure-from-Motion (SfM) core pipeline

- 5 , 5

Feature extraction

- Extract features (point locations and descriptors) for each of the N images
- SIFT features are recommended (best working features for matching right now)
- GPU accelerated implementations exist

Coarse matching

- To avoid NxN feature matching
- Many possible image pairs in the dataset will not have overlap, detailed feature matching will produce no matches for such pairs
- Cluster similar images by similarity using visual words
- Detailed matching will only be performed for similar images

Image similarity

Visual words

Histogram of visual words (bags of words)

Detailed matching

- Typically using an approximated nearest neighbor (ANN) algorithm

Geometric verification and epipolar graph

- Geometric verification of 2-view matches using fundamental matrix or essential matrix computation
- Epipolar graph: Is a plot of the number of geometrically verified 2-view feature matches
- Defines the sequential order for geometry processing

Image similarity

Epipolar graph

Geometry estimation

- Following the sequence ordering from the epipolar graph geometry is estimated for all images
- Geometry estimation is an alternating scheme:
- Estimate camera pose of new images (position, rotation)
- Triangulate new 3D data points seen in new image
- Refinement by non-linear optimization (Bundle adjustment)

Geometry estimation steps

- Compute camera poses of the first two images from feature matches

$$
P=K[I \mid 0]
$$

$P^{\prime}=K^{\prime}\left[R^{\prime} \mid t^{\prime}\right]$

Geometry estimation steps

- Computation of first 3D points by triangulation

Geometry estimation steps

- Triangulate all feature matches of the first images

$P=K[I \mid 0]$

$P^{\prime}=K^{\prime}\left[R^{\prime} \mid t^{\prime}\right]$

Geometry estimation steps

- First refinement of camera poses and 3D points by non-linear estimation of the re-projection error through bundle adjustment

Geometry estimation steps

- Start processing the next image

Geometry estimation steps

- First, create feature matches to all the previous, neighboring images

Geometry estimation steps

- Feature matches give correspondences to already computed 3D points
- From corresponding 2D and 3D points the pose of the new camera can be computed using the PnP-Algorithm

$P=K[I \mid 0]$

$P^{\prime \prime}=?$

$P^{\prime}=K^{\prime}\left[R^{\prime} \mid t^{\prime}\right]$

Geometry estimation steps

- Repeat the process starting again from triangulation of new features

$P=K[I \mid 0]$
$P^{\prime}=K^{\prime}\left[R^{\prime} \mid t^{\prime}\right]$
$P^{\prime \prime}=K^{\prime \prime}\left[R^{\prime \prime} \mid t^{\prime \prime}\right]$

Bundle adjustment

- Levenberg-Marquard optimization of re-projection error
- Parameters are camera poses and all 3D points (millions of parameters to optimize!)

$$
\min _{P_{j}, X_{i}}\left(\sum_{i} \sum_{j}\left\|x_{i, j}-P_{j} X_{i}\right\|\right)
$$

3 paradigms

hierarchical

global

Bundle adjustment (BA)

$\min _{P_{j}, M_{i}}\left(\sum_{i} \sum_{j}\left\|p_{i, j}-P_{j} M_{i}\right\|\right)=\varepsilon=f(x)$

$$
\begin{gathered}
x_{k}=x_{k-1}+d_{k-1} \\
J_{k-1}^{T} J_{k-1} d_{k-1}+J_{k-1}^{T} \varepsilon_{k-1}=0
\end{gathered}
$$

objective function to be minimized
Gauss-Newton update equation

Calculating the update vector d

$$
\begin{gathered}
J_{k-1}^{T} J_{k-1} d_{k-1}=-J_{k-1}^{T} \varepsilon_{k-1} \\
A x=b
\end{gathered}
$$

- J ... npxN matrix (n ... \#cameras, p ... \#points, N ... \#parameters)
- residual vector e is computed from $\mathrm{e}=\|\mathrm{\| x}-\mathrm{PM}\|$ for every iteration
- Then the values for the Jacobian J are computed for every iteration

The Jacobian J (example for 3 cameras and 4 3D points)

white blocks are
non-zero entries

- J ... npxN matrix (n ... \#cameras, p ... \#points, N ... \#parameters
- M .. 1x3 matrix, P ... 1x11 matrix

- $\mathrm{J}^{\top} \mathrm{J}$ is called the "Hessian Matrix" (symmetric matrix)
- U ... 11x11 symmetric matrix, V ... 3×3 symmetric matrix
- W ... 11x3 matrix

Schur complement trick/Sparse BA

$$
\begin{aligned}
& {\left[\begin{array}{cc}
U & W \\
W^{T} & V
\end{array}\right]\left[\begin{array}{l}
d(P) \\
d(M)
\end{array}\right]=\left[\begin{array}{l}
n(P) \\
v(M)
\end{array}\right]} \\
& {\left[\begin{array}{cc}
I_{11(n-1)} & -W V^{-1} \\
0_{3 p x 11(n-1)} & I_{3 p}
\end{array}\right] \quad \text { Multiply the above equation with this line to obtain }} \\
& {\left[\begin{array}{cc}
U-W V^{-1} W^{T} & 0_{3 p} \\
W^{T} & V
\end{array}\right]\left[\begin{array}{c}
d(P) \\
d(M)
\end{array}\right]=\left[\begin{array}{c}
n(P)-W V^{-1} v(M) \\
v(M)
\end{array}\right]} \\
& \mathrm{d}(\mathrm{P}) \text { and } \mathrm{d}(\mathrm{M}) \text { are separated (first row only contains } \mathrm{d}(\mathrm{P}))
\end{aligned}
$$

$d(P)$ can be computed solving this equation system of type $A x=b$
Only the matrix V needs to be inverted (efficiently possibly because it is block diagonal)

$$
\left(U-W V^{-1} W^{T}\right) d(P)=n(P)-W V^{-1} v(M)
$$

$\mathrm{d}(\mathrm{M})$ is computed by back-substitution

$$
d(M)=V^{-1}\left(v(M)-W^{T} d(P)\right)
$$

