
Robot Vision:

Structure-from-Motion (SFM)

Prof. Friedrich Fraundorfer

SS 2024

1

Outline

▪ SfM concept

▪ SfM pipeline

▪ Image similarity using visual words

▪ Incremental geometry estimation

▪ Bundle adjustment

2

Structure-from-Motion (SfM) concept

3

Structure-from-Motion (SfM) concept

Initialize Motion

(P1,P2 compatible with F)
Initialize Structure

(minimize reprojection error)

Extend motion

(compute pose through matches

seen in 2 or more previous views)

Extend structure

(Initialize new structure,

refine existing structure) 4

Structure-from-Motion (SfM) core pipeline

5

Feature

Extraction

Coarse

Matching

Detailed

Matching

Geometric

Verification
Geometric

Estimation

Local

Descriptors

Image

Overlap
Matches

Epipolar

Graph

Camera Poses

3D Points

Images
Pose

Prior
Calibration

Pose

Prior

Feature extraction

▪ Extract features (point locations and descriptors) for each of the N

images

▪ SIFT features are recommended (best working features for matching

right now)

▪ GPU accelerated implementations exist

6

Coarse matching

▪ To avoid NxN feature matching

▪ Many possible image pairs in the dataset will not have overlap, detailed

feature matching will produce no matches for such pairs

▪ Cluster similar images by similarity using visual words

▪ Detailed matching will only be performed for similar images

7
Image similarity

Visual words

feature space

cells (e.g. SIFT)

8

Histogram of visual words (bags of words)

2 10 0 0 0 0 0 00

0

0 0

1
0

1

1
0

2

1
0

0

1
0

3

1
0

4

1
0

5

1
0

6

1
0

7

1
0

8

0

9
9

9
9

9
9

1
0

9

1
1

0

9

Detailed matching

▪ Typically using an approximated nearest neighbor (ANN) algorithm

10

Geometric verification and epipolar graph

▪ Geometric verification of 2-view matches using fundamental matrix or

essential matrix computation

▪ Epipolar graph: Is a plot of the number of geometrically verified 2-view

feature matches

▪ Defines the sequential order for geometry processing

Epipolar graphImage similarity

11

Geometry estimation

▪ Following the sequence ordering from the epipolar graph geometry is

estimated for all images

▪ Geometry estimation is an alternating scheme:

▫ Estimate camera pose of new images (position, rotation)

▫ Triangulate new 3D data points seen in new image

▫ Refinement by non-linear optimization (Bundle adjustment)

12

Geometry estimation steps

▪ Compute camera poses of the first two images from feature matches

13

𝑃 = 𝐾[𝐼|0] 𝑃′ = 𝐾′[𝑅′|𝑡′]

Geometry estimation steps

▪ Computation of first 3D points by triangulation

14

𝑃 = 𝐾[𝐼|0] 𝑃′ = 𝐾′[𝑅′|𝑡′]

Geometry estimation steps

▪ Triangulate all feature matches of the first images

15

𝑃 = 𝐾[𝐼|0] 𝑃′ = 𝐾′[𝑅′|𝑡′]

Geometry estimation steps

▪ First refinement of camera poses and 3D points by non-linear estimation

of the re-projection error through bundle adjustment

16

𝑃 = 𝐾[𝐼|0] 𝑃′ = 𝐾′[𝑅′|𝑡′]

Geometry estimation steps

▪ Start processing the next image

17

𝑃 = 𝐾[𝐼|0] 𝑃′ = 𝐾′[𝑅′|𝑡′]
𝑃′′ =?

Geometry estimation steps

▪ First, create feature matches to all the previous, neighboring images

18

𝑃 = 𝐾[𝐼|0] 𝑃′ = 𝐾′[𝑅′|𝑡′]
𝑃′′ =?

Geometry estimation steps

▪ Feature matches give correspondences to already computed 3D points

▪ From corresponding 2D and 3D points the pose of the new camera can

be computed using the PnP-Algorithm

19

𝑃 = 𝐾[𝐼|0] 𝑃′ = 𝐾′[𝑅′|𝑡′]
𝑃′′ =?

Geometry estimation steps

▪ Repeat the process starting again from triangulation of new features

20

𝑃 = 𝐾[𝐼|0] 𝑃′ = 𝐾′[𝑅′|𝑡′]

𝑃′′ = 𝐾′′[𝑅′′|𝑡′′]

Bundle adjustment

▪ Levenberg-Marquard optimization of re-projection error

▪ Parameters are camera poses and all 3D points (millions of parameters

to optimize!)

21

C

y

x

xi

Xi

z PXi

min
𝑃𝑗,𝑋𝑖

෍

𝑖

෍

𝑗

𝑥𝑖,𝑗 − 𝑃𝑗𝑋𝑖

3 paradigms

22

sequential

(incremental)

hierarchical

global

Bundle adjustment (BA)

min
𝑃𝑗,𝑀𝑖

෍

𝑖

෍

𝑗

𝑝𝑖,𝑗 − 𝑃𝑗𝑀𝑖 = 𝜀 = 𝑓(𝑥)
𝑥𝑘 = 𝑥𝑘−1 +𝑑𝑘−1

𝐽𝑘−1
𝑇 𝐽𝑘−1𝑑𝑘−1 + 𝐽𝑘−1

𝑇 𝜀𝑘−1 = 0

P2

P3P1

M1 M2

M3M4

objective function to be minimized Gauss-Newton update equation

23

Calculating the update vector d

𝐽𝑘−1
𝑇 𝐽𝑘−1𝑑𝑘−1 = −𝐽𝑘−1

𝑇 𝜀𝑘−1
𝐴𝑥 = 𝑏

npxN Nx1 npx1

▪ J … npxN matrix (n … #cameras, p … #points, N … #parameters)

▪ residual vector e is computed from e=||x-PM|| for every iteration

▪ Then the values for the Jacobian J are computed for every iteration

Nxnp Nxnp

24

The Jacobian J (example for 3 cameras and 4 3D points)

▪ J … npxN matrix (n … #cameras, p … #points, N … #parameters

▪ M .. 1x3 matrix, P … 1x11 matrix

P2 P3 M1 M2 M3 M4

e11

e12

e13

e14

e21

e22

e23

e24

e31

e32

e33

e34

white blocks are

non-zero entries

25

JTJ

▪ JTJ is called the “Hessian Matrix” (symmetric matrix)

▪ U … 11x11 symmetric matrix, V … 3x3 symmetric matrix

▪ W ... 11x3 matrix

U2
W21 W22

U3
W31

WT
21 WT

31 V1

WT
22 V2

V3

V4

NxN

𝐽𝑘−1
𝑇 𝐽𝑘−1 𝑑𝑘−1 −𝐽𝑘−1

𝑇 𝜀𝑘−1

𝑑(𝑃2)

𝑑(𝑃3)

𝑑(𝑀1)

𝑑(𝑀2)

𝑑(𝑀3)

𝑑(𝑀4)

𝑛2

𝑛3

𝑣1

𝑣2

𝑣3

𝑣4

26

Schur complement trick/Sparse BA

𝑈 𝑊
𝑊𝑇 𝑉

𝑑(𝑃)
𝑑(𝑀)

=
𝑛(𝑃)
𝑣(𝑀)

𝐼11(𝑛−1) −𝑊𝑉−1

03𝑝𝑥11(𝑛−1) 𝐼3𝑝

𝑈 −𝑊𝑉−1𝑊𝑇 03𝑝

𝑊𝑇 𝑉

𝑑(𝑃)
𝑑(𝑀)

=
𝑛 𝑃 −𝑊𝑉−1𝑣(𝑀)

𝑣(𝑀)

(𝑈 −𝑊𝑉−1𝑊𝑇) 𝑑 𝑃 = 𝑛 𝑃 −𝑊𝑉−1𝑣(𝑀)

𝑑 𝑀 = 𝑉−1(𝑣(𝑀)-𝑊𝑇𝑑 𝑃)

d(M) is computed by back-substitution

Multiply the above equation with this line to obtain

d(P) and d(M) are separated (first row only contains d(P))

d(P) can be computed solving this equation system of type Ax=b

Only the matrix V needs to be inverted (efficiently possibly because it is block diagonal)

27

