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Multi-View Stereo

= |nput: set of images + camera poses (from SFM)
=  Qutput: 3D model (as dense point cloud)
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Multi-View Stereo Pipeline
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Plane-sweep multi-view stereo

» Classical plane sweeping stereo [8]
= Sweep family of planes at different depths with respect to reference camera
= With CNNs: Warp deep features instead of raw pixel values
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Deep Learning for Multi-View Stereo (MVS)

= Advantages:
= fast
= usually works better in terms of completeness
= can work on non-lambertian surfaces

= Disadvantages:
often huge (GPU) memory requirements
needs large amount of data to train on
might fail in a completely new environment



Deep Learning for MVS: Features

= Hand-crafted Features:
- Designed by human experts to extract a given set of chosen characteristics
= Trade-off between accuracy and computational efficiency
= e.g.: Census

= | earned Features:
Extracted via Convolutional Neural Network (CNN)
Learned from data



Deep Learning for MVS: Reqgularization

= Needed to filter incorrect correspondences (e.g. from occlusions, noise)
= Traditional Regularization:
= Find local correspondences
= Apply regularization methods
- Semi global matching
- Belief propagation
- Graph cut
- Smoothness priors
= Apply filters

= | earned Regularization:
Network learns to regularize raw feature output
Often 3D convolutions



Pre-process Images

= Crop/scale to fit network requirements
= Due to convolutions, width/height usually need to
be a multiple of 2" (e.g. 32 or 64)
= Adjust camera parameters accordingly!

= |mages usually need to be stacked in network -> need same sizes!

= Augment data for training: Change brightness, contrast, etc
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Deep Feature Extraction

= Acquired from RGB image via CNN

= Encode image information in a way that it can be
compared to other images

= Can have many layers
= Usually a combination of 2D convolutions, Normalization and RelLU

= Qriginal neighboring information can be encoded to smaller resolution
- Save memory for next step
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Deep Feature Extraction: 2D Convolution
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Deep Feature Extraction: 2D Convolution

= |nput and output channels can be arbitrary (modelled through more kernel weights)
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Ex. Deep Feature Extraction: Simple Feature Net
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Ex. Deep Feature Extraction: Unet
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Cost Volume

= Aggregate N feature volumes to one cost volume C via
= homography warping (plane sweep)

= Variance cost metric using the average feature volume:

SN (F - Fy)?
¢ = N

= Each point in the cost volume can be seen as a similarity measure
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Cost Volume Reqularization

=  Raw cost volume
could be noise-contaminated
has no smoothness constraint

= Use CNNSs to regularize the
obtained cost volume variance

=  Usually 3D convolutions
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Cost Volume Reqularization

= |ast 3D convolution layer maps output to single channel
= Search for lowest cost / highest probability
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Depth Inference

Classification:
Predicts label
Discrete output: Class with highest probability
Can be filtered through probability threshold

Example: Class 4 has highest prob -> Result: 4

Regression:
Predicts quantity
Continuous output
Can be filtered through entropy threshold
Example: 0.1*1 + 0.1*2 + 0.1*3 + 0.5*4 + 0.2*5 = 3.6
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Training loss: Classification

= Multi-class classification problem with cross entropy loss:

loss = Z (Z —P(i,p) - log Q(4, P))

where:
9] = spatial image coordinate
D = maximum depth value
P(i,p) = voxel in the probability volume P
Q(7, p) = ground truth voxel
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Training loss: Regression

= Regress depth outputs using the soft argmin [7] operation and |1 loss:

Dmam
soft argmin = Z d x o(—cyq)
d=1
where:

Do = maximum depth value
Cd = predicted cost
o(-) = softmax operation

1 N
loss = N Z”dn,gt - d-n,p-redHl
n=1
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Post-Processing and Filtering

= Geometric verification
= Project each pixel into different view and back
= Check if reprojected image lies within some threshold

=  Photometric verification
Measures matching quality for each pixel
Directly implemented in network: probability, standard deviation or entropy
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Datasets

= Quality of dataset very important for training

=  Benchmarks for evaluation

= Examples: DTU, Tanks and Temples, ETH3D, Blended MVS
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DTU dataset

Recorded using industrial robot arm with a structured light scanner

Indoor, small scale, different light settings, 49 or 64 images per scene

Ground-truth available as point clouds

“Ground-truth” depth maps available from MVSNet
= Screened Poisson surface reconstruction: point cloud -> mesh
= Render mesh to each viewpoint
= Not perfect: holes and wrong labelling in depth maps
= Attention-Aware MVS [6]: improve ground-truth depth maps
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http://roboimagedata.compute.dtu.dk/

DTU dataset
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Tanks and Temples dataset

= Ground-truth point cloud captured with industrial laser scanner
= Qutdoor and indoor environments

= high-res video available for each scene
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https://www.tanksandtemples.org/

Tanks and Temples dataset




ETH3D dataset

Ground-truth point cloud from laser scan
13 training and 12 test scenes in high resolution
5 training and 5 test videos in low resolution

Challenging
= large image size
= large viewpoint change
= small amount of images

Deep learning methods not (yet) competitive
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https://www.eth3d.net/datasets

ETH3D dataset
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Evaluation

= Qverall Score: mean of accuracy and completeness (DTU)
= Measures the mean distance to the groundtruth point cloud
= Lower is better

= F-Score: harmonic mean of precision and recall (TaT, ETH3D)
= Measured at a certain distance threshold d
= |f either P(d) —» 0 or R(d) — 0, then F(d) — 0
= Better summary measure than the arithmetic mean

2P(d)R(d)
P(d) + R(d)

F(d) =

31



Examples

= MVSNet (ECCV 2018): CostRegNet after volume variance calculation

= R-MVSNet (CVPR 2019): regularizes 2D costmaps along depth direction via GRU to
save memory

= MVSCRF (ICCV 2019): CRF after cost volume regularization

= CasMVSNet (CVPR 2020): Multiscale feature extraction, refine depth values in every
step

=  Cost Volume Pyramid (CVPR 2020)

= Attention-Aware MVS (CVPR 2020)
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HighRes-MVSNet: Evaluation DTU

| Method | Acc.  Comp. Overall
o | Furu [0] 0.613 0941 0777
E | Tola[27] 0.342 1.190  0.766 =
E | Camp ] 0.835 0.554  0.695 =
& | Gipuma [7] 0.283 0.873  0.578 =
COLMAP [25,26] | 0.400  0.664  0.532 =
MVSNet [32] 0.396 0.527  0.462 &
R-MVSNet [33] 0383 0452 0417
e SurfaceNet [ 4] 0.450  1.040 0.745
‘= | MVSCRF [29] 0371 0.426 0398 ”
% | Point-MVSNet [1] | 0.342  0.411 0376 5
— | CasMVSNet [9] 0.346 0351  0.348 O
CVP-MVSNet [31] | 0.296  0.406  0.351
AEMVS [20] 0383 0.329 0336
Fast-MVSNet [35] | 0.336  0.403  0.370 scanls scan23
Ours 0354 0393 0373
Ours(HR) 0.346  0.345  0.346
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HighRes-MVSNet: Evaluation TaT

Method [ Mean | Family Francis Horse Lighthouse M60 Panther Playground Train
COLMAP [25, 26] | 42.41 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04
MVSNet [32] 4348 | 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69
R-MVSNet [33] 48.40 | 69.96 46.65 32.59 42.95 51.88 48.80 52.00 42.38
Point-MVSNet [4] 48.27 | 61.79 41.15 34.20 50.79 51.97 50.85 52.38 43.06
AttM VS [20] 60.05 73.90 62.58 44.08 64.88 56.08 59.39 63.42 56.06
CasMVSNet [Y] 56.42 | 76.36 58.45 46.20 55.53 56.11 54.02 58.17 46.56
CVP-MVSNet [31] | 54.03 76.50 47.74 36.34 55.12 57.28 54.28 57.43 47.54
MVSCREF [29] 45.73 59.83 30.60 29.93 51.15 50.61 51.45 52.60 39.68
Fast-MVSNet [35] | 47.39 | 65.18 39.59 34.98 47.81 49.16 46.20 53.27 42.91
Ours 49.81 66.62 44.17 30.84 55.13 53.20 50.32 55.45 42.73
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