Robot Vision:
Geometric Algorithms - Part 2

Prof. Friedrich Fraundorfer
SS 2024

Outline

- Fundamental matrix properties
- The singularity constraint
- The normalized 8-point algorithm
- The Gold Standard method
- Camera matrices from the essential matrix
- The essential matrix for the stereo case
- Triangulation
- Camera pose estimation and the rotation matrix

Learning goals

- Understand the properties of the fundamental matrix
- Understand the singularity constraint
- Be able to compute a fundamental matrix with enforced singularity constraint
- Understand the normalized 8-point method and the Gold Standard method
- Be able to compute camera poses from an essential matrix
- Understand triangulation
- Understand the geometry of the stereo normal case
- Be able to compute camera matrices with correct rotational part

Fundamental matrix properties

- F is a unique 3×3 matrix with rank 2 (singular, $\operatorname{det}(F)=0)$
- If F is the fundamental matrix for camera matrices $\left(P, P^{\prime}\right)$ then the transposed matrix F^{\top} is the fundamental matrix for $\left(\mathrm{P}^{\prime}, P\right)$
- Epipolar lines are computed by: $I^{\prime}=F x, I=F^{\top} x^{\prime}$
- Epipoles are the null-spaces of F. $F e=0, e^{, T} F=0$
- F has 7 DOF, i.e. 3×3 matrix - 1 DOF (homogeneous, scale) - 1 DOF (rank 2 constraint)

The singularity constraint of the fundamental matrix

- Other names: Rank 2 constraint, $\operatorname{det}(F)=0$ constraint
- A valid fundamental matrix has to be singular (non-invertible), which means the determinant $\operatorname{det}(F)=0$.
- In addition, the rank of a valid fundamental matrix has to be 2
- Explanation: $\mathrm{F}=K^{-T} E K^{-1}=K^{-T}[t]_{x} R K^{-1}$
- $[t]_{x}$ has rank 2 and $\operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))$.
- 8-Point algorithm computes all the 9 elements of the F-matrix independently. It is not guaranteed that the $\operatorname{rank}(F)=2 \operatorname{or} \operatorname{det}(F)=0$
- These properties need to be enforced!

The singularity constraint of the fundamental matrix

- SVD of a linearly computed F-matrix (rank 3):

$$
\mathrm{F}=U S V^{T}=U\left[\begin{array}{lll}
s_{1} & & \\
& s_{2} & \\
& & s_{3}
\end{array}\right] V^{T}
$$

- Closest rank-2 approximation by setting the last singular value to 0
- Results in the closest matrix under the Frobenius norm $\min \left\|F-F^{\prime}\right\|_{F}$

$$
\mathrm{F}=U S V^{T}=U\left[\begin{array}{lll}
s_{1} & & \\
& s_{2} & \\
& & 0
\end{array}\right] V^{T}
$$

The singularity constraint of the fundamental matrix

- Example:
$F=$

0.0012818033647169	-0.195296914367969	-0.404026958783203
0.592627190886001	-0.0992048118304505	-0.505391799650038
0.244770293871894	0.181983926946307	0.298529042380632

$S=$

| 0.853380835370105 | 0 | 0 |
| :---: | :---: | :---: | :---: |
| 0 | 0.521146237658923 | 0 |
| 0 | 0 | 0.0121551962950181 |

S_=

0.853380835370105	0		0
0	0.521146237658923		0
0	0	0	

-0.504149694914234 0.29549328182407
$\operatorname{rank}(F)=2$
norm(F-F_)=0.0121

The singularity constraint of the fundamental matrix

- Does it make a difference?

Epipolar lines from corrected F-matrix

Epipolar lines from not corrected F-matrix Epipolar lines don't intersect

The normalized 8-point algorithm

- Solving the fundamental matrix equation system using pixel coordinates can give bad results (due to numerical instabilities)
- Solution: Normalization of pixel coordinates

Algorithm:

1. Transform the coordinates such that the image center is at $(0,0)$ and that the maximum distance from the origin is $\sqrt{2}$
2. Compute Fn using the 8 -point method from the normalized points
3. Enforce the singularity constraints
4. Transform the fundamental matrix back to original units

The normalized 8-point algorithm

- Example: Transform image coordinates to [-1,-1]x[1,1]

- Transformation K is like a calibration matrix
- $F=K^{\top} F n K$

The Gold Standard method

- Accurate solution using non-linear optimization

1. Compute an initial estimate for \hat{F} using the normalized 8 -point algorithm (enforcing rank 2 constraint)
2. Extract cameras P and P^{\prime} from \hat{F}

$$
P=[I \mid 0] \quad P^{\prime}=\left[\left[e^{\prime}\right]_{x} \widehat{F} \mid e^{\prime}\right]
$$

3. Triangulate 3D points from point correspondences
4. Use non-linear optimization e.g. Levenberg-Marquardt to minimize the reprojection error

$$
\sum_{i} d\left(x_{i}, \hat{x}_{i}\right)^{2}+d\left(x_{i}^{\prime}, \hat{x}_{i}^{\prime}\right)^{2}
$$

by optimizing the parameters of P and $\mathrm{P}^{‘}$ and the 3 D points.

Camera matrices from Essential matrix

- Essential matrix represents the relative motion between two cameras
- Camera matrices P and P‘ can be computed from E

$$
\begin{aligned}
E & =[t]_{x} R \quad \mathrm{E}=K^{T} F K \\
P & =[\mathrm{l} 0] \\
P^{\prime} & =\left[\begin{array}{ll}
\mathrm{R} \mathrm{t}]
\end{array}\right.
\end{aligned}
$$

- R and $[\mathrm{t}]_{\mathrm{x}}$ can be computed using the SVD of E

$$
\left.\begin{array}{rc}
U S V^{T}=\operatorname{svd}(E) \\
& {[t]_{x}=U\left[\begin{array}{ccc}
0 & \mp 1 & 0 \\
\pm 1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] V^{T}} \\
\mp 1 & 0 \\
\hline 1 & 0 \\
0 & 0
\end{array} 0.0\right]_{x}=\left[\begin{array}{ccc}
0 & -t_{z} & t_{y} \\
t_{z} & 0 & -t_{x} \\
-t_{y} & t_{x} & 0
\end{array}\right] . ~ \$
$$

- 4 possible combinations of R and t

Camera matrices from Essential matrix

- P is set as the canonical coordinate system at the origin, $\|t\|=1$

$$
P=\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] \quad P^{\prime}=[\mathrm{Rt}]
$$

- Only for one of the 4 configurations the image rays intersect in front of the cameras.
- This is the true configuration and can be found by triangulating points

The essential matrix for the stereo case

$$
R=I_{3 \times 3} \quad T=\left[\begin{array}{lll}
T_{x} & 0 & 0
\end{array}\right]^{T}
$$

The essential matrix for the stereo case

$$
\begin{aligned}
& E=I_{3 x 3} \quad \begin{array}{l}
T=\left[\begin{array}{lll}
T_{x} & 0 & 0
\end{array}\right]^{T} \\
\\
{\left[\begin{array}{lll}
x^{\prime} & y^{\prime} & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T_{x} \\
0 & T_{x} & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T_{x} \\
0 & T_{x} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
-T_{x} \\
T_{x} y
\end{array}\right]=0} \\
-y^{\prime} T_{x}+T_{x} y=0
\end{array}
\end{aligned}
$$

Triangulation

- Compute coordinates of world point X given the measurements x, x ' and the camera projection matrices P and P^{\prime}

Triangulation

- Condition: Measurement vector x needs to have the same direction as projection of X (cross-product equals 0)
- $x \times(P X)=0$ and $x^{\prime} \times\left(P^{\prime} X\right)=0$
- Can be rewritten into equation system $A X=0$ to solve for X

Triangulation

$$
\begin{aligned}
& x \times(P X)=0 \text { and } x^{\prime} \times\left(P^{\prime} X\right)=0 \\
& x\left(P_{3}^{T} X\right)-\left(P_{1}^{T} X\right)=0 \\
& y\left(P_{3}^{T} X\right)-\left(P_{2}^{T} X\right)=0 \\
& x\left(P_{2}^{T} X\right)-y\left(P_{1}^{T} X\right)=0
\end{aligned}
$$

$$
P=\left[\begin{array}{l}
P_{1}^{T} \\
P_{2}^{T} \\
P_{3}^{T}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
x P_{3}^{T}-P_{1}^{T} \\
y P_{3}^{T}-P_{2}^{T} \\
x^{\prime} P_{3}^{\prime T}-P_{1}^{\prime T} \\
y^{\prime} P_{3}^{\prime T}-P_{2}^{\prime T}
\end{array}\right] X=0
$$

Camera pose estimation

- perspective-n-point problem
- Goal is to estimate camera matrix P such that $\mathrm{m}_{1}=P \mathrm{M}_{1}$
- $\mathrm{m}_{1}, \mathrm{M}_{1}, \mathrm{~m}_{2}, \mathrm{M}_{2}, \mathrm{~m}_{3}, \mathrm{M}_{3}$ are known
- Algebraic linear solution requires 6 3D-2D point correspondences, minimal nonlinear solution requires only 3

Camera pose estimation

- Derivation similar to Triangulation, but now entries of P are the unknowns instead of X
- Condition: Measurement vector x needs to have the same direction as projection of X (cross-product equals 0)

Camera pose estimation

- Derivation similar to Triangulation, but now entries of P are the unknowns instead of X
- Condition: Measurement vector x needs to have the same direction as projection of X (cross-product equals 0)

$$
\begin{aligned}
& x \times(P X)=0 \text { for all pairs } x \leftrightarrow X \\
& y\left(P_{3}^{T} X\right)-w\left(P_{2}^{T} X\right)=0 \\
& x\left(P_{3}^{T} X\right)-w\left(P_{1}^{T} X\right)=0 \\
& x\left(P_{2}^{T} X\right)-y\left(P_{1}^{T} X\right)=0 \\
& {\left[\begin{array}{ccc}
0 & -w X^{T} & y X^{T} \\
-w X^{T} & 0 & x X^{T} \\
-y X^{T} & x X^{T} & 0
\end{array}\right]\left[\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=0}
\end{aligned}
$$

Camera pose estimation

- Linear camera pose estimation does not enforce inner constraints

$$
\begin{aligned}
& P=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right] \\
& P=\left[\begin{array}{llll}
R_{11} & R_{12} & R_{13} & p_{14} \\
R_{21} & R_{22} & R_{23} & p_{24} \\
R_{31} & R_{32} & R_{33} & p_{34}
\end{array}\right]
\end{aligned}
$$

- R is a 3×3 rotation matrix
- Elements of R are not independent of each other
- Rotation matrices belong to the matrix group $\mathrm{SO}(3)$

$$
R^{T} R=I, \operatorname{det}(R)=+1
$$

Special orthogonal group SO(n)

- The set of all the nxn orthogonal matrices with determinant equal to +1 is a group w.r.t. the matrix multiplication:

$$
S O(n)=(\{A \in O(n) \mid \operatorname{det}(A)=+1\}, \times)
$$

Special orthogonal group

- $\mathrm{SO}(3)$... group of orthogonal 3×3 matrices with det=+1 "rotation matrices"
- $R_{3}=R_{1}{ }^{*} R_{2} \ldots R_{3}$ is still an $\mathrm{SO}(3)$ element
- $R_{3}=R_{1}+R_{2} \ldots R_{3}$ is NOT an $\mathrm{SO}(3)$ element. Not a rotation matrix anymore.

Problems with rotation matrices

- Optimization of rotations (bundle adjustment)
- Newton's method $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f r\left(x_{n}\right)}$
- Filtering and averaging, e.g. $R^{\prime}=\frac{R_{1}+R_{2}}{2}$ not allowed
- E.g. averaging rotation from IMU or camera pose tracker for AR/VR glasses

Enforcing the rotation matrix constraint

- After estimating the camera matrix \hat{P} it can be replaced with the closest P that consists of a valid rotational part.
- $\mathrm{P}=[\mathrm{R} \mid \mathrm{t}]$, where $R^{T} R=I$, $\operatorname{det}(R)=+1$
- Such a P can be found using SVD.

$$
\begin{gathered}
\hat{P}=\left[\begin{array}{ll}
M & t
\end{array}\right] \\
U S V=\operatorname{svd}(M) \\
R=U V^{T} \\
P=\left[\begin{array}{ll}
R & t
\end{array}\right]
\end{gathered}
$$

Recap - Learning goals

- Understand the properties of the fundamental matrix
- Understand the singularity constraint
- Be able to compute a fundamental matrix with enforced singularity constraint
- Understand the normalized 8-point method and the Gold Standard method
- Be able to compute camera poses from an essential matrix
- Understand triangulation
- Understand the geometry of the stereo normal case
- Be able to compute camera matrices with correct rotational part

