Robot Vision: Geometric Algorithms – Part 2

Prof. Friedrich Fraundorfer

SS 2024

Outline

- Fundamental matrix properties
- The singularity constraint
- The normalized 8-point algorithm
- The Gold Standard method
- Camera matrices from the essential matrix
- The essential matrix for the stereo case
- Triangulation
- Camera pose estimation and the rotation matrix

Learning goals

- Understand the properties of the fundamental matrix
- Understand the singularity constraint
- Be able to compute a fundamental matrix with enforced singularity constraint
- Understand the normalized 8-point method and the Gold Standard method
- Be able to compute camera poses from an essential matrix
- Understand triangulation
- Understand the geometry of the stereo normal case
- Be able to compute camera matrices with correct rotational part

Fundamental matrix properties

- F is a unique 3x3 matrix with rank 2 (singular, det(F)=0)
- If F is the fundamental matrix for camera matrices (P,P') then the transposed matrix F^T is the fundamental matrix for (P',P)
- Epipolar lines are computed by: l'=Fx, l=F^Tx'
- **Epipoles** are the null-spaces of F. Fe=0, e'^TF=0
- F has 7 DOF, i.e. 3x3 matrix 1 DOF (homogeneous, scale) 1 DOF (rank 2 constraint)

- Other names: Rank 2 constraint, det(F) = 0 constraint
- A valid fundamental matrix has to be singular (non-invertible), which means the determinant det(F)=0.
- In addition, the rank of a valid fundamental matrix has to be 2
- Explanation: $F = K^{-T}EK^{-1} = K^{-T}[t]_{x}RK^{-1}$
- $[t]_x$ has rank 2 and rank(AB) \leq min(rank(A), rank(B)).
- 8-Point algorithm computes all the 9 elements of the F-matrix independently. It is not guaranteed that the rank(F)=2 or det(F)=0
- These properties need to be enforced!

SVD of a linearly computed F-matrix (rank 3):

$$\mathbf{F} = USV^T = U \begin{bmatrix} s_1 & & \\ & s_2 & \\ & & s_3 \end{bmatrix} V^T$$

- Closest rank-2 approximation by setting the last singular value to 0
- Results in the closest matrix under the Frobenius norm $min||F F'||_F$

$$\mathbf{F} = USV^T = U \begin{bmatrix} s_1 & & \\ & s_2 & \\ & & 0 \end{bmatrix} V^T$$

Example:	
----------	--

A = (8	3x9)							
1	3	5	3	4	3	7	4	1
2	9	4	2	8	2	5	7	5
7	3	6	6	8	9	9	6	5
5	7	6	5	3	6	2	7	8
2	2	7	5	6	5	1	9	5
4	3	6	6	6	6	1	9	4
6	1	9	7	5	5	1	2	7
2	6	2	4	8	6	4	2	7

F =

0.0012818033647169	-0.195296914367969	-0.404026958783203
0.592627190886001	-0.0992048118304505	-0.505391799650038
0.244770293871894	0.181983926946307	0.298529042380632

S =

0.85338083537	0105	0	0
0	0.5211462376	658923	0
0	0	0.0121551	962950181

S_=

0.8533808353	70105	0		0
0	0.521146237	7658923		0
0	0		0	

$F_= U^*S_*V^T$

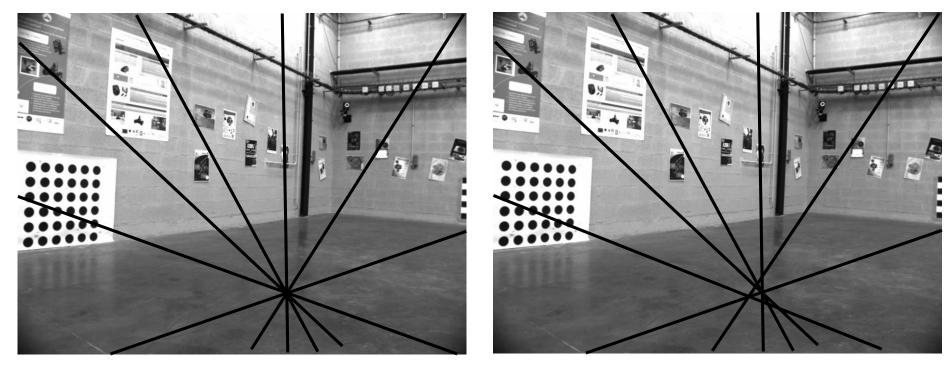
-0.000493883737627127
0.59321760922536
0.243327284554864

-0.187153153340858 -0.101912623277308 0.188601941472783 -0.407762597079129 -0.504149694914234 0.29549328182407

rank(F)=2 norm(F-F_)=0.0121

rank(F)=3

Does it make a difference?



Epipolar lines from corrected F-matrix

Epipolar lines from not corrected F-matrix Epipolar lines don't intersect

The normalized 8-point algorithm

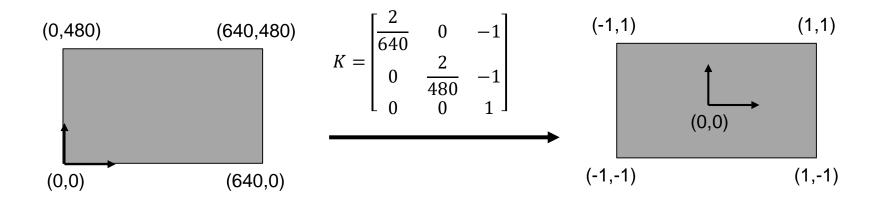
- Solving the fundamental matrix equation system using pixel coordinates can give bad results (due to numerical instabilities)
- Solution: Normalization of pixel coordinates

Algorithm:

- 1. Transform the coordinates such that the image center is at (0,0) and that the maximum distance from the origin is $\sqrt{2}$
- 2. Compute Fn using the 8-point method from the normalized points
- 3. Enforce the singularity constraints
- 4. Transform the fundamental matrix back to original units

The normalized 8-point algorithm

Example: Transform image coordinates to [-1,-1]x[1,1]



- Transformation K is like a calibration matrix
- $F = K^T FnK$

The Gold Standard method

- Accurate solution using non-linear optimization
- 1. Compute an initial estimate for \hat{F} using the normalized 8-point algorithm (enforcing rank 2 constraint)
- 2. Extract cameras P and P' from \hat{F}

$$P = [I|0]$$
 $P' = [[e']_x \hat{F}|e']$

- 3. Triangulate 3D points from point correspondences
- 4. Use non-linear optimization e.g. Levenberg-Marquardt to minimize the reprojection error

$$\sum_{i} d(x_{i} , \hat{x}_{i})^{2} + d(x_{i}', \hat{x}_{i}')^{2}$$

by optimizing the parameters of P and P' and the 3D points.

Camera matrices from Essential matrix

- Essential matrix represents the relative motion between two cameras
- Camera matrices P and P' can be computed from E

$$E = [t]_{x}R \qquad E = K^{T}FK$$
$$P = [I 0]$$
$$P' = [R t]$$

R and [t]_x can be computed using the SVD of E

$$USV^T = svd(E)$$

$$R = U \begin{bmatrix} 0 & \mp 1 & 0 \\ \pm 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} V^{T} \qquad [t]_{x} = U \begin{bmatrix} 0 & \pm 1 & 0 \\ \mp 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} U^{T}$$
$$[t]_{x} = \begin{bmatrix} 0 & -t_{z} & t_{y} \\ t_{z} & 0 & -t_{x} \\ -t_{y} & t_{x} & 0 \end{bmatrix}$$

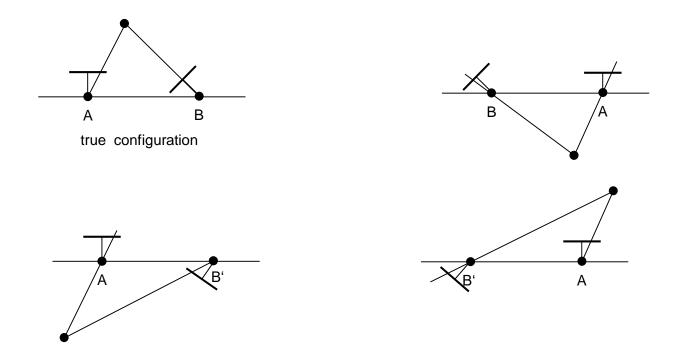
4 possible combinations of R and t

Camera matrices from Essential matrix

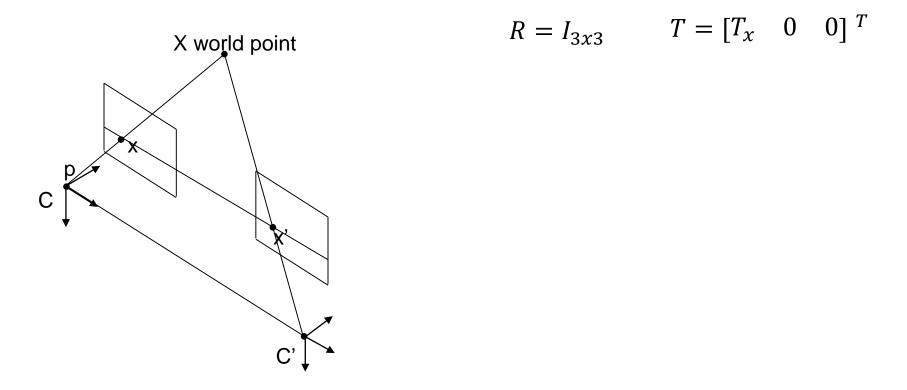
• P is set as the canonical coordinate system at the origin, ||t|| = 1

 $P = [I 0] \qquad P' = [R t]$

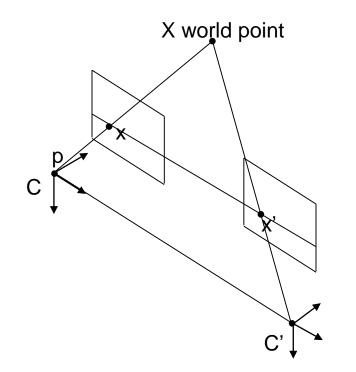
- Only for one of the 4 configurations the image rays intersect in front of the cameras.
- This is the true configuration and can be found by triangulating points



The essential matrix for the stereo case



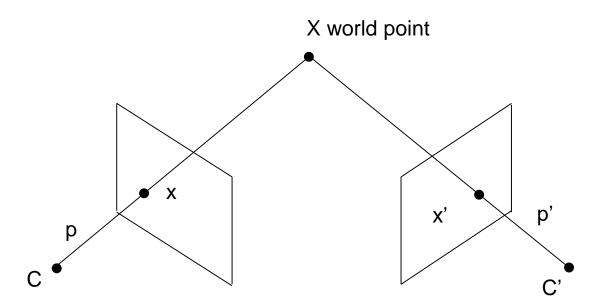
The essential matrix for the stereo case



$$R = I_{3x3} \qquad T = \begin{bmatrix} T_x & 0 & 0 \end{bmatrix}^T$$
$$E = \begin{bmatrix} T \end{bmatrix}_x R = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T_x \\ 0 & T_x & 0 \end{bmatrix}$$

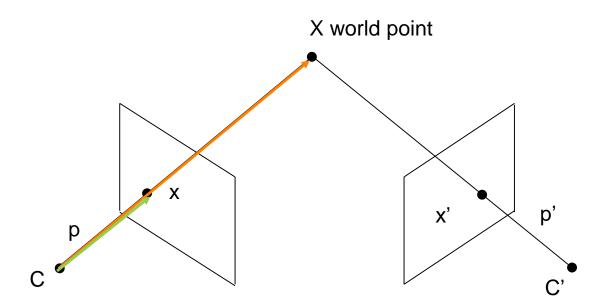
$$\begin{bmatrix} x' & y' & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T_x \\ 0 & T_x & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$
$$\begin{bmatrix} x' & y' & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -T_x \\ T_x y \end{bmatrix} = 0$$
$$-y'T_x + T_x y = 0$$

Triangulation



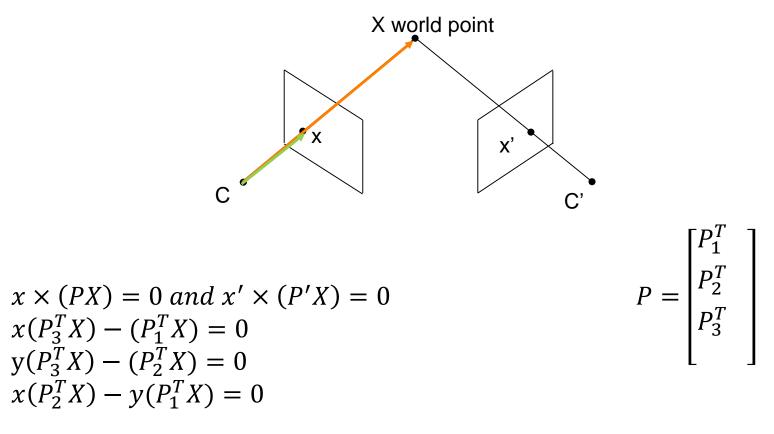
 Compute coordinates of world point X given the measurements x, x' and the camera projection matrices P and P'

Triangulation



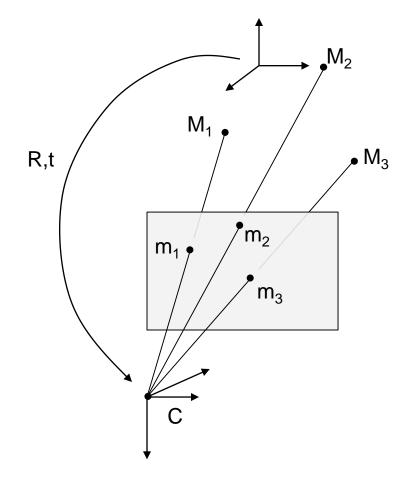
- Condition: Measurement vector x needs to have the same direction as projection of X (cross-product equals 0)
- $x \times (PX) = 0$ and $x' \times (P'X) = 0$
- Can be rewritten into equation system AX = 0 to solve for X

Triangulation



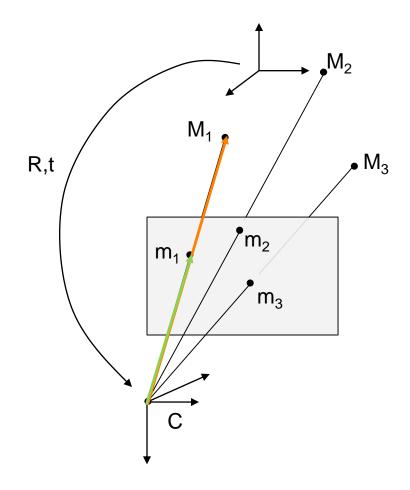
$$\begin{bmatrix} xP_{3}^{T} - P_{1}^{T} \\ yP_{3}^{T} - P_{2}^{T} \\ x'P'_{3}^{T} - P'_{1}^{T} \\ y'P'_{3}^{T} - P'_{2}^{T} \end{bmatrix} X = 0$$

Camera pose estimation



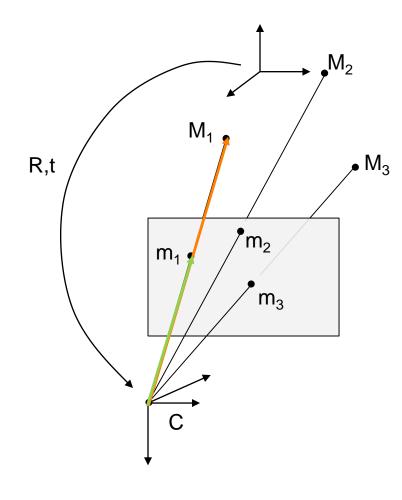
- perspective-n-point problem
- Goal is to estimate camera matrix P such that m₁=PM₁
- $m_1, M_1, m_2, M_2, m_3, M_3$ are known
- Algebraic linear solution requires 6 3D-2D point correspondences, minimal nonlinear solution requires only 3

Camera pose estimation



- Derivation similar to Triangulation, but now entries of P are the unknowns instead of X
- Condition: Measurement vector x needs to have the same direction as projection of X (cross-product equals 0)

Camera pose estimation



- Derivation similar to Triangulation, but now entries of P are the unknowns instead of X
- Condition: Measurement vector x needs to have the same direction as projection of X (cross-product equals 0)

$$x \times (PX) = 0 \text{ for all pairs } x \leftrightarrow X$$

$$y(P_3^T X) - w(P_2^T X) = 0$$

$$x(P_3^T X) - w(P_1^T X) = 0$$

$$x(P_2^T X) - y(P_1^T X) = 0$$

$$\begin{bmatrix} 0 & -wX^T & yX^T \\ -wX^T & 0 & xX^T \\ -yX^T & xX^T & 0 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} = 0$$

Linear camera pose estimation does not enforce inner constraints

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix}$$

$$P = \begin{bmatrix} R_{11} & R_{12} & R_{13} & p_{14} \\ R_{21} & R_{22} & R_{23} & p_{24} \\ R_{31} & R_{32} & R_{33} & p_{34} \end{bmatrix}$$

- R is a 3x3 rotation matrix
- Elements of R are not independent of each other
- Rotation matrices belong to the matrix group SO(3)

 $R^T R = I, \det(R) = +1$

Special orthogonal group SO(n)

 The set of all the nxn orthogonal matrices with determinant equal to +1 is a group w.r.t. the matrix multiplication:

 $SO(n) = (\{A \in O(n) | \det(A) = +1 \}, \times)$

Special orthogonal group

- SO(3) ... group of orthogonal 3x3 matrices with det=+1 "rotation matrices"
- $R_3 = R_1^* R_2 \dots R_3$ is still an SO(3) element
- R₃ = R₁+R₂ ... R₃ is **NOT** an SO(3) element. Not a rotation matrix anymore.

Problems with rotation matrices

- Optimization of rotations (bundle adjustment)
 - Newton's method $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
- Filtering and averaging, e.g. $R' = \frac{R_1 + R_2}{2}$ not allowed
 - E.g. averaging rotation from IMU or camera pose tracker for AR/VR glasses

Enforcing the rotation matrix constraint

- After estimating the camera matrix \hat{P} it can be replaced with the closest P that consists of a valid rotational part.
- P = [R | t], where $R^T R = I$, det(R) = +1
- Such a P can be found using SVD.

$$\hat{P} = \begin{bmatrix} M & t \end{bmatrix}$$
$$USV = svd(M)$$
$$R = UV^{T}$$
$$P = \begin{bmatrix} R & t \end{bmatrix}$$

Recap - Learning goals

- Understand the properties of the fundamental matrix
- Understand the singularity constraint
- Be able to compute a fundamental matrix with enforced singularity constraint
- Understand the normalized 8-point method and the Gold Standard method
- Be able to compute camera poses from an essential matrix
- Understand triangulation
- Understand the geometry of the stereo normal case
- Be able to compute camera matrices with correct rotational part