Camera Drones Lecture – Flight mechanics and Control

Prof. Friedrich Fraundorfer

WS 2024

Outline

- Quadrotor flight mechanics
- Quadrotor control principles

Quadrotor dynamics

- Each rotor produces force/lift and torque by accelerating air
- Gravity pulls quadrotor downwards

Quadrotor hovering

- Hovering when the lift exactly balances the gravity and when the torque is precisely canceled
- Torque is canceled by counter-rotating rotors

Quadrotor vertical acceleration

Thrust

$$F_{thrust} = F_1 + F_2 + F_3 + F_4$$

Quadrotor vertical and horizontal acceleration

• Thrust $F_{thrust} = F_1 + F_2 + F_3 + F_4$

Quadrotor pitch and roll

- To pitch or roll the forces produced by the rotors need to be out of balance
- However, pure pitching and rolling not possible. Every pitch or roll induces also a horizontal acceleration

Quadrotor yaw

- Out-of balance torque is used to produce yaw rotation
- Torque $T = T_1 T_2 + T_3 T_4$
- Change rotor spin of pairs of rotors to keep the lift constant, but create imbalanced torque

Outline

- Quadrotor flight mechanics
- Quadrotor control principles

Quadrotor control - Hovering

- Hovering means quadrotor needs to hold position
- Requirement:
 - Each rotor produces exactly the same thrust (if there is a slight imbalance, a movement occurs)

- Practically infeasible control loop necessary
- Control loop means measuring deviation from hover position and then act against deviation
- What needs to be measured for this?
 - Is attitude/orientation enough? If attitude is perfect zero than there is no movement

Elements of quadrotor control

Measurements needed for quadrotor control

Control timings

- Motor control happens on motor boards (controls every motor tick)
- Attitude control implemented on micro-controller with hard real-time (at 250Hz-1000Hz)
- Position control (at 4-250Hz)
- Trajectory (waypoint) control (at 0.1-1Hz)