	Graz University of Technology
Institute of Biomechanics Gerhard A. Holzapfel Dr. Dr.h.c., Professor Head of Institute	Gerhard A. Holzapfel Dr. Dr.h.c., Professor of Biomechanics Graz University of Technology, Austria Stremayrgasse 16-II 8010 Graz, Austria & Norwegian University of Science and Technology (NTNU) Faculty of Engineering Science and Technology, Trondheim, Norway E-Mail: holzapfel@TUGraz.at URL www.biomech.tugraz.at Phone: ++43 316 873 35500 For BMMB Journal: www.springeronline.com/journal/10237 DVR: 008 1833 UID: ATU 574 77 929
	Graz: January 1, 2025

Mathematical and Numerical Modelling of Neurodegenerative Diseases

Paola F. Antonietti

Head of Laboratory for Modeling and Scientific Computing MOX Professor of Numerical Analysis Dipartimento di Matematica, Politecnico di Milano, Italy https://antonietti.faculty.polimi.it/

Neurodegenerative diseases (NDs) comprise a varied group of disorders that primarily affect neurons within the brain and central nervous system, leading to a gradual and progressive deterioration of neuronal function. A pathological hallmark shared by numerous NDs is the accumulation of misfolded proteins unique to each disease, such as amyloid-beta and tau in Alzheimer's disease and alpha-synuclein in Parkinson's disease. This presentation discusses the mathematical and numerical modelling of misfolded protein dynamics in the context of neurodegenerative diseases, employing a sequence of increasingly sophisticated mathematical and computational models. To tackle the inherent complexity, we propose and analyse Machine Learning-enhanced high-order polytopal discontinuous Galerkin methods for the numerical discretisation of these models. The effectiveness of these methods is demonstrated through numerical simulations that integrate patient-specific brain geometries reconstructed from clinical data. In the second part of the talk, we investigate the computational modelling of waste removal (clearance) mechanisms in the brain, a crucial process involved in the onset and progression of NDs. We provide an extensive analysis of our numerical approach for simulating these clearance mechanisms, supplemented by patient-specific simulations to demonstrate the clinical relevance of our findings.

Place: Stremayrgasse 16/I, Seminar Room BMT 01046

Date: January 29, 2025 at 4:00 pm