

Supplement to the Curriculum for the

Master's Degree Program

Information and Computer Engineering

Supplement to the Curriculum 2015 in the Version 2020

This supplement was approved by the Senate of the Graz University of Technology in the session on May 27th, 2024.

Supplement to §5a Elective Course Catalogs

(1) In the elective course catalog c01: *Information Security*, the following course is renamed:

Old Course Title	Туре	SSt	EC TS	New Course Title	Туре	SSt	EC TS
Einführung in das IT-Recht	VO	2	3	Introduction to IT Law		2	3

(2) In the elective course catalog c02: *Visual Computing*, the following course is renamed:

Old Course Title	Туре	SSt	EC TS	New Course Title	Туре	SSt	EC TS
Information Visualization	VU	3	5	5 Information Visualisation		3	5

(3) In the elective course catalog c04: *Signal Processing and Human Communication*, the following course is renamed:

Old Course Title	Туре	SSt	EC TS	New Course Title	Туре	SSt	EC TS
Speech Communication Laboratory	LU	2	4	Speaking and Listening Machines	LU	2	4

(4) In the elective course catalog c05: Communications and Mobile Computing, the following courses are renamed:

Old Course Title	Туре	SSt	EC TS	New Course Title	Туре	SSt	EC TS
Electrodynamics ICE	VO	2	3	Electromagnetic Fields I	VO	2	3
Fundamentals of Digital Communications	VO	2	3	Digital Communications	VO	2	3
Fundamentals of Digital Communications	UE	1	1,5	Digital Communications	UE	1	1,5

(5) In the elective course catalog c08: *Microelectronics and IC Design*, the following courses are renamed:

Old Course Title	Туре	SSt	EC TS	New Course Title		SSt	EC TS
Grundlagen der Hochfrequenztechnik	VO	2	3	Fundamentals of RF and Microwave Engineering	VO	2	3
Grundlagen der Hochfrequenztechnik	UE	1	1,5	Fundamentals of RF and Microwave Engineering	UE	1	1,5
Grundlagen der Mikroelektronik	VO	2	3	Basics of Microelectronics	VO	2	3

(6) In the elective course catalog c03: *Robotics and Intelligent Systems,* the course type for the following course is changed from KU to LU:

Course	SSt	Туре	ECTS	Semester
Kinematics and Robotics	1	KU	2	S

Supplement to Part 2 of the Appendix, Recognition and Equivalence List

At the end of the Equivalence List section, the following text and table are added:

The following equivalence list also applies:

Current Curriculum 2015 in the version of 2020			Equivalent Course				
Course	Туре	SSt	EC TS	Course	Туре	SSt	EC TS
Electrodynamics ICE	UE	1	1,5	Electromagnetic Fields I	UE	2	3

These supplements take effect on October 1st, 2024

Curriculum for the

Master's Degree Programme Information and Computer Engineering

Curriculum 2015 in the version of 2020

This version of the curriculum was approved by the Curricular Committee of Graz University of Technology in the meeting dated March 2, 2020.

On the basis of the Federal Act on the Organisation of Universities and their Studies (UG), Austrian Federal Law Gazette (BGBI.) No. 120/2002 as amended, the Senate of Graz University of Technology issues the following curriculum for the master's degree programme in Information and Computer Engineering.

Table of contents

Master's Degree Programme Information and Computer Engineering 1
§ 1 General provisions 2
§ 2 Object of degree programme and the qualification profile
§ 3 ECTS credit points 4
§ 4 Structure of the degree programme5
§ 5 Course content and semester plan7
§ 5a Catalogues of electives 7
§ 5b Free-choice subject 19
§ 5c Stays abroad and practical training 20
§ 6 Admission to examinations 20
§ 7 Examination regulations21
§ 7a Final examination before a committee 22
§ 7b Degree certificate
§ 8 Transitional provisions
§ 9 Legal validity
Annex to the curriculum of the Master's Degree Programme Information and Computer Engineering

Part 1 of the Annex:	24
Part 2 of the Annex:	27
Part 3 of the Annex:	30
Part 4 of the Annex:	30
Part 5 of the Annex:	32
Part 6 of the Annex	33
Part 7 of the Annex	34

§ 1 General provisions

- (1) The Master's Degree Programme Information and Computer Engineering is comprised of four semesters. The total scope of the programme is 120 ECTS credit points.
- (2) The Master's Degree Programme Information and Computer Engineering is taught as a degree programme in a foreign language in English, according to § 64 (6) of the Universities Act (UG).
- (3) Graduates of this degree programme are awarded the university degree of "Diplom-Ingenieurin"/"Diplom-Ingenieur", abbreviated: "Dipl.-Ing." or "DI". The international equivalent of this university degree is "Master of Science", abbreviated: "MSc".
- (4) Admission to the Master's Degree Programme Information and Computer Engineering requires a subject-related bachelor's degree or another equivalent degree according to § 64 (5) of the Universities Act (UG). The Master's Degree Programme Information and Computer Engineering builds upon the content of the Bachelor's Degree Programme Information and Computer Engineering of Graz University of Technology. Graduates of this degree programme and also of the previous Bachelor's Degree Programme Telematics are admitted to this master's degree programme of Graz University of Technology without any prerequisites being imposed.
- (5) Depending on the previous education of the applicant to the programme, up to 25 ECTS credit points from the courses of the above-mentioned Bachelor's Degree Programme Information and Computer Engineering may be prescribed as part of the admission to the curriculum presented here for graduates of other bachelor's degree programmes. The specified courses reduce the workload stipulated in the curriculum for achievements in the elective or minor subject area to a comparable extent. The details are specified in Part 5 of the Annex. The admission rules for selected bachelor's degree programmes are also summarised in Part 5 of the Annex. However, a bachelor's degree programme that entitles the student to be admitted must be comprised of a minimum of 180 ECTS credit points. In order to obtain an overall scope of 300 ECTS credit points for the graduate and postgraduate degree programmes, the assignment of one and the same course in both the bachelor's degree programme entitling to admission and the master's degree programme in question is not permitted.

(6) The degree programme is to be completed with a master's thesis and a final master's examination before a committee in accordance with § 7a.

§ 2 Object of degree programme and the qualification profile

(1) Object of degree programme

Throughout the history of human activity, there has never been such a rapid growth in knowledge and the associated changes in knowledge as is the case with information technologies. Graduates of the Master's Degree Programme Information and Computer Engineering learn to deal with this phenomenon and to adjust to the need for independent and constant renewal of their knowledge. For this reason, the curriculum is designed to allow a great deal of freedom in the choice of teaching content and prepares students to think, decide and act independently and proactively.

A particular objective of this programme is therefore to develop the ability to think, decide and act in an interdisciplinary manner, and to develop an integrative approach to systems and therefore environmental and social issues, which are gaining in significance, especially with regard to increasing economic and social globalisation.

Information technologies are the carriers and motors of globalisation and the expansion of the English language as the lingua franca of our world. This is why the use of English is a natural element of the Master's Degree Programme Information and Computer Engineering. International doctoral candidates are integrated into the field of studies, and visiting professors from the international community enrich the degree programme considerably and contribute to the development of social competence. Projects, lecture activities, written work and teamwork further the development of the corresponding key competencies. Strategic thinking is developed as an integral element of the degree programme.

(2) Qualification profile and skills

Graduates of the Master's Degree Programme Information and Computer Engineering are prepared for a wide range of challenges and are able to adapt more effectively to all areas of information and communication technology in a shorter period of time than people with master's degrees from other, less interdisciplinary education and training programmes. Students of the Master's Degree Programme Information and Computer Engineering have achieved the following goals by successfully completing the programme:

Knowledge and understanding

Graduates

- have developed an understanding of the relevant basics,
- are familiar with the key theories, principles and methods of information processing and information technology, and have deepened their knowledge considerably in two scientific fields of information processing and information technology,
- are familiar with the working methods of these areas and are able to apply these and the scientific principles in practice and

• are familiar with the most important strategies for solving problems.

Knowledge-based application and assessment

Graduates

- are able to apply theoretical knowledge of a technical and scientific nature in a practical way,
- have developed the capacity for interdisciplinary analysis and assessment and the ability to justify and advocate solutions and
- recognise the ethical, social, societal and economic connections and necessities.

Communicative, organisational and social competencies

Graduates

- are able to acquire new skills and work independently on research and development projects,
- have developed an awareness of the need for lifelong learning,
- are able to present the results in written and oral form and contribute to decision-making processes,
- have basic knowledge in the handling of projects,
- are able to integrate themselves into a team and independently take on subtasks and management functions and
- are capable of cross-border and interdisciplinary cooperation.

(3) Need and relevance of the degree programme for science and for the labour market

Information and telecommunications networks and systems have gained significant and rapid importance in recent decades and are an integral part of new technologies in virtually all aspects of science, economy and society. Consequently, the scope of activities of individuals with an education in Information and Computer Engineering is correspondingly broad.

Graduates of the Master's Degree Programme Information and Computer Engineering will be able to independently model, design, implement, operate and evaluate complex hardware and software systems in the field of information technology and telecommunications. Graduates have a broad, detailed and critical understanding of the state of the art in several specialist areas.

Due to the broad field of activities covered in the Master's Degree Programme Information and Computer Engineering, the career opportunities are highly diverse: in industry, as a service provider, in public administration and in teaching and research, predominantly in management positions.

§ 3 ECTS credit points

In accordance with the European Credit Transfer and Accumulation System, the individual courses are assigned ECTS credit points that determine the relative share of the workload. The Universities Act (UG) determines the workload for one ECTS credit point to be an average of 25 full hours, 60 minutes each.

§ 4 Structure of the degree programme

The Master's Degree Programme Information and Computer Engineering consists of

- 1. a major with a minimum of 40 ECTS credit points,
- 2. a minor with a minimum of 20 ECTS credit points,
- 3. an elective subject that includes courses totalling up to 14 ECTS credit points; The choice must be made from the courses listed in § 5a in such a way that the sum of the major, minor and elective subjects results in at least 74 ECTS credit points. A larger number of study achievements from items 1 and 2 therefore reduces the required number of achievements from the elective subject.
- 4. a seminar/project with 10 ECTS credit points, allocated to the major or the minor.
- 5. a free-choice subject that encompasses free-choice courses with a workload of 6 ECTS credit points, and
- 6. a master's thesis. The master's thesis corresponds to 30 ECTS credit points und is allocated to a technical subject area in accordance with § 4.5.

Master's Degree Programme Information and Computer Engineering								
Major:	min. 40 ECTS credit points							
Minor	min. 20 ECTS credit points							
Elective subject (to be assessed together with the minor)	max. 14 ECTS credit points							
Seminar/Project (allocated to the major and minor)	10 ECTS credit points							
Free-choice subject	6 ECTS credit points							
Total workload without master's thesis	90 ECTS credit points							
Master's thesis	30 ECTS credit points							
Total Master's Degree Programme Information and Computer Engineering	120 ECTS credit points							

§ 5a below includes a list of the individual courses of this master's degree programme and their allocation to the subject areas. The semester allocation is a recommendation and ensures that the sequence of courses builds optimally on acquired previous knowledge and that the workload of an academic year does not exceed 60 ECTS credit points.

Courses that were taken to complete the bachelor's degree programme to grant admission to this programme are not part of this master's degree programme. If compulsory courses that are provided for in this curriculum were already completed as part of the bachelor's degree programme described above, they are to be replaced by additional elective courses comprising the same work load.

§ 4.1 Mentoring

All students must choose a mentor competent in the relevant subject area. He or she should support and advise the student in the creation and design of the degree programme, in particular in the sensible selection of courses.

The list of mentors is compiled by the Curricular Committee Working Group for Information and Computer Engineering and published on the website of the responsible Dean's Office. Mentors have the option of refusing to supervise a student in the event of an excessive workload, but in any case one of the mentors responsible for the proposed subject area must take over the supervision. Students can request a change of mentor from the officers responsible for study matters without giving reasons. If possible, such requests should be granted in consultation with the newly selected mentor.

In cases of conflict, the officers responsible for study matters decides.

§ 4.2 Choice of major, minor und elective subject

The Master's Degree Programme Information and Computer Engineering focuses on the design and analysis of information and communication technology systems. Major and minor subject areas represent meaningful specialisations in Information and Computer Engineering.

In the course of the first semester of the master's degree programme, the catalogues of electives belonging to the major and minor must be specified. These are either catalogues of electives from the list in § 5a or a new subject composition must be made for one or both of these subject areas. The major is to be chosen from the technical catalogues of electives, the minor may be selected from all catalogues of electives defined in § 5a; the courses for the elective subject may be selected from the entire range of courses according to § 5a including the supplementary catalogue.

If a new composition is made, it must be confirmed by a mentor who is responsible for the subject area and must be forwarded to the officers responsible for study law matters via the relevant Dean's Office. The compulsory courses and/or selected combinations of compulsory elective courses defined in the catalogues of electives under § 5a are in any case part of the corresponding subject area.

In the case of an individual subject combination, the mentor, in consultation with the officers responsible for study matters, decides on the proposal and defines a name for this subject area. In case of a deviation of less than 10 ECTS credit points from a catalogue of electives contained in § 5a, the name may be the same. All courses selected for an individual subject combination must be completed.

The choice of a catalogue of electives contained in § 5a can be changed by providing an explanation. In the case of an individual subject combination, the changes must only apply to a catalogue of electives contained in § 5a. A change within an individual subject combination is only possible in order to guarantee the ability to study, e.g. if a course belonging to the individual subject combination is unexpectedly discontinued.

§ 4.3 Lecture and exercise-oriented performances

The major, minor and elective subject combined have to comprise at least 33 ECTS credit points in lectures and portions of lectures with integrated exercises as well as at least 18 ECTS credit points in exercise-oriented achievements. The following are used for the calculation of these exercise-oriented services: the exercise portions of lectures with integrated exercises¹, exercises, design exercises, laboratory course, projects, and seminars, as well as a maximum of one seminar/project completed in addition to the prescribed seminar/project. The prescribed seminar/project is not included in the percentage of exercise-oriented achievements.

In individual cases, this restriction may be waived on request.

¹The lecture and exercise percentage is to be found in § 7.

§ 4.4 Balance

Within the framework of the Master's Degree Programme Information and Computer Engineering, at least 18 ECTS credit points must be earned in the field of electrical engineering and information technology (Faculty of Electrical and Information Engineering) and at least 18 ECTS credit points in the field of information processing (Faculty of Computer Science and Biomedical Engineering and Faculty of Mathematics, Physics and Geodesy). This allocation can be found in the course number and is supplemented in Part 6 of the Annex.

§ 4.5 Master's thesis

As part of the Master's Degree Programme Information and Computer Engineering, a master's thesis is to be written. It must be assigned to one of the catalogues of electives listed in § 5a; the only exception is the catalogue of electives defined as non-technical in § 5a. In the case of individual subject combinations, the student, together with the mentor and the supervisor of the master's thesis, must make a meaningful allocation of the master's thesis to a subject area at the beginning of the master's thesis.

If the master's thesis is assigned to a subject area other than the major or minor subject area, it implicitly results in a broad education. In this case, students must earn at least 10 ECTS credit points from the catalogue of electives of the master's thesis.

§ 5 Course content and semester plan

Master's Degree Programme Information and Computer Engineering										
	Semesters with Course ECTS credit points									
Subject Course	SSt	Туре	ECTS	- I	11	III	IV			
Seminar/Project	6	SP	10			10				
Total of major, minor und elective sub- ject acc. to § 5a			74	30	30	14	0			
Master's thesis			30				30			
Free-choice subject according to § 5b			6	0	0	6	0			
Total			120	30	30	30	30			

§ 5a Catalogues of electives

The following table includes the proposed catalogues of electives of the Master's Degree Programme Computer Engineering. The table has the following structure:

1st row: Number, name of course

further rows:

1st column: Institute offering the course (the information is only to be regarded as a reference) 2nd column: Name of the course

3rd column: Semester course hours (SSt)

4th column: Type of course

5th column: ECTS credit points for the Master's Degree Programme Computer Engineering

6th column: Compulsory course (course must be completed when choosing the subject area)

Compulsory elective course (it is possible to choose from at least 2 alternatives when choosing the subject area)

The table contains the seminars/projects that are automatically allocated to the course. Seminars/projects from other institutes can be allocated in consultation with the mentor.

The list of the responsible university teachers and the mentors is compiled by the Curricular Committee Working Group for Information and Computer Engineering and is available on the website of the Dean's Office for Computer Science and Biomedical Engineering (<u>csbme.tugraz.at</u>) and at the TU4U at any time.

c01 In	formation Security				
	The elective subject "Information Security" deals with the challen	ge of ensuri	ing the	securi	ty of information
	and communication technology. The focus lies on understanding using security mechanisms as well as on the thorough knowledg	practical as e of the prin	spects iciples	of imple of thes	ementing and e mechanisms.
705	Cloud Operating Systems	3	VU	5.0	
501	Coding and Cryptography	3	VO	4.5	
501	Coding and Cryptography	1	UE	1.5	
716	Compiler Construction	2	VO	3.0	
716	Compiler Construction	- 1	KU	2.0	
705	Cryntanalysis	2	VO	3.0	
705	Cryptanalysis	1	KII	2.0	
105	Oryptanalysis	I	NO	2.0	Compulsory
705	Cryptography	2	VO	3.0	course Compulsory
705	Cryptography	1	KU	2.0	course
705	Digital System Design	2	VO	3.0	
705	Digital System Design	1	KU	2.0	
705	Digital System Integration and Programming	3	VU	5.0	
503	Discrete Stochastics and Information Theory	1	UE	1.0	
503	Discrete Stochastics and Information Theory (Computer Science) 3	VO	4.5	
U232	Introduction into ICT-Law ^{KFU, DE}	, 2	VO	3.0	
448	Fault-Tolerant Distributed Algorithms	2	VU	3.0	
716	Formal Specification and Design of Software	3	VU	5.0	
706	Knowledge Discovery & Data Mining 1	2	VO	3.0	
700	Knowledge Discovery & Data Mining 1	- 1	<u>к</u> П	1.5	
700	Logic and Computability	י ר		3.0	
705	Logic and Computability	2 1	VU	1.5	
705	Mobile Security	ו ס		2.0	
705	Mobile Security	2		3.0	
705	Model Checking	1	NO	2.0	
705	Model Checking	2		3.0	
705		1	UE	2.0	
/16	Model-Based Testing	3	VU	5.0	
705	Privacy Enhancing Technologies	2	VO	3.0	
705	Privacy Enhancing Technologies	1	KU	2.0	
716	Problem Analysis and Complexity Theory	3	VU	4.5	0
705	Secure Application Design	2	VO	3.0	elective course
705	Secure Application Design	1	KU	2.0	elective course
705	Secure Product Lifecycle	2	VO	3.0	
705	Secure Product Lifecycle	- 1	KU	2.0	
705	Secure Software Development	2	VO	3.0	Compulsory course
					Compulsory
705	Secure Software Development	1	KU	2.0	course
705	Seminar Cryptology and Privacy	2	SE	3.5	
705	Seminar Formal Methods	2	SE	3.5	
705	Side-Channel Security	3	VU	5.0	
705	Verification and Testing	2	VO	3.0	Compulsory elective course
					Compulsory
705	verification and Testing	1 ECTS	UE	2.0	elective course

Options for the selection of compulsory elective courses: All compulsory and compulsory elective courses must be completed for the major. All compulsory courses must be completed for the minor.

705 Seminar/Project Information Security

4 SP 10

Mentors: Bloem, Eichelseder, Gruß, Mangard, Rechberger

c01a S	oftware Technology				
	The elective subject "Software Technology" provides advanced techni	ques r	elevan	t to the	development of
	complex and critical software. This includes the fields of analysis, desi	gn, va	lidatior	n and v	erification. An-
	other issue is the application of artificial intelligence techniques in soft	ware e	enginee	ering. P	rogramming lan-
716	Advanced Topics in Artificial Intelligence	2	VO	3.0	
716	Advanced Topics in Artificial Intelligence	1	UE	2.0	
716	Arile Software Development	3		5.0	
716	Architecture of Database Systems	3	VU	5.0	
710	Architecture of Machine Learning Systems	2		5.0	
710	Architecture of Machine Learning Systems	ა ი	VO	5.0	Compulsor
/10	Compiler Construction	2	vO	3.0	Compulsory
716	Compiler Construction	1	KU	2.0	Compulsory course
716	Configuration Systems	2	VU	3.0	
448	Design Patterns	2	VO	3.0	Compulsory
448	Design Patterns	1	UE	1.5	elective course Compulsory
716	Design Thinking and Rapid Prototyping	3	ιu	3.0	elective course
706	Designing Interactive Systems	2	VU	3.0	
716	Formal Specification and Design of Software	3	VU	5.0	
1/18	Industrial Software Development and Quality Management	2	VO	3.0	
1/8	Industrial Software Development and Quality Management	1		1.5	
716	Intelligent Systems	2		3.0	
716	Intelligent Systems	4	VU	2.0	
710	Mabile Applications	ו ס		2.0	
710	Model Checking	ა ი	VO	5.0	
705	Model Checking	2		3.0	
705	Model Cnecking	1	UE	2.0	
716		3	VU	5.0	
716	Modelling Technical Systems	2	VO	3.0	
/16	Modelling Technical Systems	1	KU	2.0	
716	Object-oriented Analysis and Design ^{DE}	2	VU	3.0	
716	Problem Analysis and Complexity Theory	3	VU	4.5	
716	Quality Ensurance in Software Development ^{DE}	2	VU	2.5	
716	Recommender Systems	2	VU	3.0	
716	Secure Software Development	2	VO	3.0	
716	Secure Software Development	1	UE	2.0	
716	Software Engineering for Autonomous Robots	2	VU	3.0	
716	Software Technology	3	VU	5.0	Compulsory course
716	Software Testing for Safety-Critical Systems	2	VO	3.0	
716	Software Testing for Safety-Critical Systems	1	KU	2.0	
716	Software Maintenance	3	VU	4.5	
705	Verification and Testing	2	VO	3.0	Compulsory elective course
705	Verification and Testing	1	UE	2.0	Compulsory elective course
716	Web Technology	3	VU	5.0	
	Total ECTS				118.5

Options for the selection of compulsory elective courses:

Out of the 4 blocks (VU or VO+KU/UE), 4 blocks must be selected for the major and the two mandatory blocks must be selected for the minor.

716	Seminar/Project Software Technology		4	SP	10	
	Mentors: Aichernig, Bloem, Felfernig, Macher, Slany, Wo	tawa				
c02 V	isual Computing					
744	The elective subject "Visual Computing" provides student image processing, geometric modelling, virtual and augm dition to mastering the theoretical basics of the subject ar plication. The application areas range from medicine to in	s with a deepe ented reality a ea, particular dustrial autom	er kno and in emph nation	wledge formation asis is	e of col on visu placed	mputer graphics, ualisation. In ad- l on practical ap-
711	3D Computer Graphics and Realism		3	VU	5.0	
711	3D Object Retrieval		3	VU	5.0	Compulson
710	Augmented Reality		3	VU	5.0	elective course
710	Camera Drones		3	VU	5.0	
			-			Compulsory
710	Computer Vision 2 ^{DE}		1.5	VU	2.5	course
711	Computer-Aided Geometric Design		3	VU	5.0	
						Compulsory
710	Computer Graphics 2 ^{DE}		1.5	VU	2.5	course
710	Convex Optimisation		3	VU	5.0	
507	Discrete Differential Geometry		2	VO	3.0	
711	Fundamentals of geometry processing		3	VU	4.5	
711	Geometric 3D-Modelling in Computer Graphics		3	VU	5.0	
710	GPU Programming		3	VU	5.0	
710	Image and Video Understanding		2	VO	3.0	
710	Image and Video Understanding		1	KU	2.0	
438	Image Based Measurement		2	VO	3.0	
438	Image Based Measurement, Laboratory		1	LU	1.5	
710	Image Processing and Pattern Recognition		2	VO	3.0	Compulsory elective course Compulsory
710	Image Processing and Pattern Recognition		1	ΚU	2.0	elective course
706	Information Visualisation		3	VU	5.0	
710	Mathematical Principles in Visual Computing		3	VU	5.0	
710	Medical Image Analysis		2	VO	3.0	
710	Medical Image Analysis		1	KU	2.0	
710	Numerical Optimisation		3	VO	4.5	
710	Numerical Optimisation		2	UE	2.5	
						Compulsory
710	Real-Time Graphics		2	VO	3.0	elective course
-						Compulsory
710	Real-Time Graphics		1	KU	2.0	elective course
710	Robot Vision		2	VO	3.0	
710			2	vO	5.0	Compulsory
710	Robot Vision		1	KU	2.0	elective course
710	Seminar Pattern Recognition		3	SE	5.0	
711	Simulation and Animation		3	VU	5.0	
710	Virtual Reality		4	VU	7.0	
	·	Total ECTS				116.0
	Options for the selection of compulsory elective courses: The compulsory courses apply to major and minor. Out of	f the 4 comput	lsorv	elective	block	s (VU or

The compulsory courses apply to major and minor. Out of the 4 compulsory elective blocks (VU VO+KU/UE), 3 blocks for the major and 1 block for the minor must be completed.

710 711 Seminar/Project Visual Computing

Mentors: Augsdörfer, Bischof, Fellner, Fraundorfer, Kalkofen, Lepetit, Schmalstieg, Pinz, Pock, Schreck, Steinberger

SP

10

4

c03 Robotics and Intelligent Systems

The elective subject "Robotics and Intelligent Systems" provides in-depth knowledge of the key methods for developing intelligent robots and systems. In addition to teaching the theoretical principles of current methods such as navigation, computer vision, machine learning, knowledge representation, decision making or language comprehension, the focus lies on the ability to design, implement and validate intelligent systems.

		_			Compulsory
716	Advanced Robotics	2	VO	3.0	course
716	Advanced Pohotics	1		20	Compulsory
716	Advanced Topics in Artificial Intelligence	2		2.0	000130
716	Advanced Topics in Artificial Intelligence	4		2.0	
110		י ר		2.0	
44Z 710		2		5.0	
710	Camera Diones	3	vu	5.0	Compulsory
716	Construction of Mobile Robots	2	PT	5.0	elective course
448	Context-Aware Computing	2	VO	3.0	
448	Context-Aware Computing	1	UE	1.5	
431	Control of Electric Drives and Machines	2	VO	3.0	
431	Control of Electric Drives and Machines, Laboratory	2	LU	3.0	
708	Deen Learning	2	VO	3.0	
708	Deep Learning	1	KU	2.0	
706	Designing Interactive Systems	2	VU	3.0	
716	Basics in Artificial Intelligence and Logic ^{DE}	2	VU	3.0	
438	Image Based Measurement	2	VO	3.0	
438	Image Based Measurement Laboratory	1	111	15	
301		2		3.0	
301	Robotics Lab ^{DE}	2	111	3.0	
522	Inertial Navigation	2		3.0	
522	Inertial Navigation	2 1		3.0 1 5	
522			UL	1.5	Compulsory
716	Intelligent Systems	2	VO	3.0	elective course
	5				Compulsory
716	Intelligent Systems	1	KU	2.0	elective course
507	Kinematics and Robotics	2	VO	3.0	
507	Kinematics and Robotics	1	KU	2.0	
706	Knowledge Discovery & Data Mining 1	2	VO	3.0	
706	Knowledge Discovery & Data Mining 1	1	KU	1.5	
					Compulsory
442	Computational Intelligence	2	VO	3.0	elective course
112	Computational Intelligence	1		15	Compulsory
442	Computational intelligence	1	UL	1.5	Compulsory
507	Mobile Robots	2	VO	3.0	elective course
					Compulsory
716	Mobile Robots	1	UE	2.0	elective course
716	Modelling Technical Systems	2	VO	3.0	
716	Modelling Technical Systems	1	KU	2.0	
522	Navigation Systems	2	VU	3.0	
710	Numerical Optimisation	3	VO	4.5	
710	Numerical Optimisation	2	UE	2.5	
443	Optimisation and Control	2	VO	3.0	
443	Optimisation and Control, Laboratory	1	LU	1.5	
442	Nonlinear Signal Processing	2	VO	3.0	
442	Nonlinear Signal Processing	1	UE	1.5	
					Compulsory
710	Robot Vision	2	VO	3.0	course
710	Pahat Vision	4	KII	20	Compulsory
710	Robusto Engineering for Autonomeurs Debete	ו ס		∠.∪ 2.0	COUISE
110	Sonware Engineering for Autonomous Robots	2	VO	ა.U ა ი	
443	State Estimation and Filtering	2	vO	3.0	

443	State Estimation and Filtering		1	UE	1.5	
	То	tal ECTS				120.0
	Options for the selection of compulsory elective courses: In the major, the compulsory subjects and 2 blocks (each VC jects must be completed. In the minor, a total of 2 blocks from subjects must be completed.	D+UE/KU) m the comp	from oulso	the con ry and c	npulsory compuls	elective sub- ory elective
708	Seminar/Project Machine Learning and Neuroinformatics		4	SP	10	
716	Seminar/Project Robotics		4	SP	10	
442	Seminar/Project Signal Processing		4	SP	10	

Mentors: Fraundorfer, Kubin, Legenstein, Pernkopf, Slany, Steinbauer, Wotawa

c04 Signal Processing and Human Communication

We can hear, see, speak, feel, think and regulate all processes of life with signals and have trained our communication and information devices, cars, machines, etc. to make use of them. The elective subject "Digital Signal Processing" focuses on the algorithms of signal processing which will lead future highly integrated systems of information technology to peak performance.

442	Adaptive Systems	2	VO	3.0	course
442	Adaptive Systems	1	UE	1.5	Compulsory
K17	Algorithms in acoustics and computer music 01 ^{DE}	2	VO	3.0	
K17	Algorithms in acoustics and computer music 01 ^{DE}	1	UE	1.5	
442	Audio Signal Processing Applications	2	vo	3.0	
442	Audio Signal Processors Laboratory	2	LU	3.0	
442	Automatic Speech Recognition	2	VO	3.0	
717	Biosignal Processing	2	VO	3.0	
717	Biosignal Processing	2	UE	3.0	
709	Cognitive Neuroscience	2	VO	3.0	
442	Digital Signal Processing, Laboratory	2	LU	3.0	
442	Digital Audio Engineering ^{DE}	2	VO	3.0	
442	Human Speech Production, Perception, and Pathologies	2	VU	3.0	
709	Introduction to Brain-Computer Interfaces	1	VO	1.5	
442	Linguistic Foundations of Speech and Language Technology	2	VO	3.0	
709	Methods of Functional Brain Research	2	VO	3.0	
442	Mixed-Signal Processing Systems Design	2	VU	3.0	
438	Multi-Sensor Data Fusion, Laboratory	2	LU	3.0	
709	Neurocomputing, Seminar	2	SE	3.5	
709	Neuroprosthetics	2	VO	3.0	
709	Non-Invasive Brain-Computer Interfaces	2	VO	3.0	Compulsory elective course Compulsory
709	Non-Invasive Brain-Computer Interfaces	2	KU	3.0	elective course
709	Non-Invasive Brain-Computer Interfaces 2	2	KU	3.0	
442	Nonlinear Signal Processing	2	VO	3.0	
442	Nonlinear Signal Processing	1	UE	1.5	
708	Principles of Brain Computation	2	VO	3.0	
708	Principles of Brain Computation	1	KU	2.0	
448	Processor Architecture	2	VO	3.0	
448	Processor Architecture, Laboratory	1	LU	1.5	
K17	Psychoacoustics 01 ^{DE}	2	VO	3.0	
K17	Psychoacoustics 02 ^{DE}	2	VO	3.0	
709	Rehabilitation Engineering	2	VO	3.0	. .
438	Signal Analysis	2	VO	3.0	Compulsory course Compulsory
438	Signal Analysis	1	UE	1.5	course
442	Signal Processing and Machine Learning 1, Seminar	2	SE	3.0	
442	Signal Processing and Machine Learning 2, Seminar	2	SE	3.0	

442	Speech Communication Laboratory	2	2 L	U	4.0	Compulsory elective course Compulsory
442	Speech Signal Processing	2	2 \	/0	3.0	elective course
442	Speech Signal Processing	1	1 l	JE	1.5	
442	Speech Synthesis	2	2 \	/0	3.0	
442	Spoken Language in Human and Human-Computer Dialogue	2	2 ۱	/U	3.5	
438	Statistical Signal Processing	2	2 \	/0	3.0	Compulsory elective course Compulsory
438	Statistical Signal Processing	1	1 l	JE	1.5	elective course
	Total	ECTS				118.0

Options for the selection of compulsory elective courses:

The compulsory courses apply to major and minor. For the major, it is necessary to additionally choose (Non-Invasive Brain-Computer Interfaces VO + KU) or (Statistical Signal Processing VO+UE) or (Speech Signal Processing VO and Speech Communication, Laboratory).

709	Seminar/Project Brain Computer Interface	4	SP	10
442	Seminar/Project Signal Processing	4	SP	10
442	Seminar/Project Speech Communication	4	SP	10

Mentors: Hagmüller, Kubin, Müller-Putz, Pernkopf, Schuppler, Witrisal, Wriessnegger

c05 Communications and Mobile Computing

Everyday objects and environments are increasingly equipped with wirelessly networked computer systems that use sensors to detect conditions and automatically adapt to them. This development is reflected in concepts such as the Internet of Things or cyber-physical systems. The elective subject "Communications and Mobile Computing" deals with the basics and applications of such systems, from radio-based communication technologies, self-organising sensor networks and their integration into the Internet, to the development of smart services and machine learning methods for resource-limited mobile systems.

442	Adaptive Systems	2	VO	3.0	
442	Adaptive Systems	1	UE	1.5	
451	Antennas and Wave Propagation	2	VO	3.0	
451	Antennas and Wave Propagation	1	UE	1.5	
451	Applied Microwave Systems	2	VO	3.0	
440	Communication Networks	2	VO	3.0	
440	Communication Systems, Laboratory	2	LU	3.0	
437	Computational Electromagnetics	2	VO	3.0	
		-			Compulsory
448	Context-Aware Computing	2	VO	3.0	elective course Compulsory
448	Context-Aware Computing	1	UE	1.5	elective course
440	Design of Digital Modems	2	VO	3.0	
					Compulsory
437	Electrodynamics ICE	2	VO	3.0	elective course
137	Electrodynamics ICE	1	LIE	15	elective course
407		2		3.0	elective course
1/8	Embedded Internet I aboratory	2	111	3.0	
1/8	Eault-Tolerant Distributed Algorithms	2		3.0	
440		2	vU	0.0	Compulsory
442	Fundamentals of Digital Communications	2	VO	3.0	elective course
					Compulsory
442	Fundamentals of Digital Communications	1	UE	1.5	elective course
451	HF-Engineering ^{DE}	2	VO	3.0	
451	HF-Engineering ^{DE}	1	UE	1.5	
451	HF-Engineering, Laboratory ^{DE}	1	LU	1.0	o .
440	Information Theory and Coding	2	VO	3.0	Compulsory
110	monitation moory and obtaing	-		0.0	Compulsory
440	Information Theory and Coding	1	UE	1.0	elective course
451	Introduction to Radar Systems	2	VO	3.0	

448	Mobile Computing, Laboratory		2	LU	3.0	
						Compulsory
448	Mobile Computing, Seminar		3	SE	5.0	course
442	Mobile Radio Systems		2	VO	3.0	
440	Modelling of Wireless Propagation Channels		2	VO	3.0	
437	Numerical Optimisation		2	VO	3.0	
437	Numerical Optimisation		1	UE	1.5	
451	Optoelectronical Communication Engineering		3	VO	4.5	
451	Optoelectronical Communication Engineering		1	UE	2.0	
448	Power-Aware Computing		2	VU	3.0	
448	Power-Aware Computing, Laboratory		1	LU	1.5	
451	Radar, Seminar		1.5	SE	2.0	
440	Satellite Communications		2	VO	3.0	
440	Satellite Communications		1	UE	1.5	
451	Selected Topics of RFID Sensor Systems		2	VO	3.0	
448	Sensor Networks		2	VU	3.0	
448	Sensor Networks, Laboratory		2	LU	3.0	
437	Simulation of Time-Dependent Fields		2	VO	3.0	
437	Simulation of Time-Dependent Fields		1	UE	1.5	
451	Smart Antennas		2	VU	3.0	
448	Smart Service Development		2	VO	3.0	
448	Smart Service Development		1	UE	1.5	
	·	Total ECTS				116.0

Options for the selection of compulsory elective courses:

For the major, Mobile Computing, SE and 2 of the 4 compulsory elective blocks (VO+UE) must be completed; for the minor, Mobile Computing, SE and one of compulsory elective blocks (VO+UE) must be completed.

437	Seminar/Project Computational Electrodynamics	4	SP	10
448	Seminar/Project Technical Informatics	4	SP	10
440	Seminar/Project Telecommunications	4	SP	10

Mentors: Boano, Bösch, Brenner, Gappmair, Grosinger, Koudelka, Leitgeb, Magele, Renhart, Römer, Saukh, Steger, Witrisal

c06 Embedded and Automotive Systems

The elective subject "Embedded and Automotive Systems" provide and deepen theoretical and practical knowledge about design, implementation and analysis of embedded systems. Hardware, software and their co-design are treated as well as their application in electronic and mechanical contexts, for example in vehicles, cyber-physical systems, sensors, actuators or the Internet of Things.

452	Automotive Electronics	2	VO	3.0	
452	Automotive Electronics, Laboratory	2	LU	3.0	
331	Automotive Engineering for Electrical, Information and Computer En- gineering	2	VO	3.0	Compulsory elective course
438	Automotive Measurement	2	VO	3.0	
438	Automotive Measurement, Laboratory	1	LU	1.5	
438	Automotive Sensors and Actuators	2	VO	3.0	
438	Automotive Sensors and Actuators, Laboratory	2	LU	3.0	
448	Design of Real-Time Systems, Laboratory	2	LU	3.0	
448	Design Patterns	2	VO	3.0	
448	Design Patterns	1	UE	1.5	
448	Distributed Embedded Systems, Seminar	3	SE	5.0	Compulsory elective course Compulsory
261	Dynamical Systems ^{DE}	3	VU	5.0	elective course
313	Piston Engines, Introduction ^{DE}	2	VO	3.0	
313	Thermodynamics Introduction ^{DE}	2	VO	3.0	
439	Electromagnetic Compatibility of Electronic Systems	2	VO	3.0	
439	Electromagnetic Compatibility of Electronic Systems, Laboratory	1	LU	1.5	

448	Embedded Automotive Software	2	VU	3.0	Compulsory elective course
-			-		Compulsory
448	Embedded Systems	2	VO	3.0	course Compulsory
448	Embedded Systems, Laboratory	1	LU	1.5	course
448	Fault-Tolerant Computing Systems	2	VO	3.0	
448	Fault-Tolerant Computing Systems	1	UE	1.5	
431	Introduction to Electric Machines ^{DE}	1.5	VO	2.0	
448	Industrial Software Development and Quality Management	2	VO	3.0	
448	Industrial Software Development and Quality Management	1	UE	1.5	
331	Automotive Power Transmissions ^{DE}	2	VO	3.0	
448	Microcontroller	1.5	VO	2.0	
448	Microcontroller	2	UE	3.0	
448	Microcontroller Design, Laboratory	4	LU	6.0	
438	On Board Diagnosis	2	VO	3.0	
448	Processor Architecture	2	VO	3.0	
448	Processor Architecture, Laboratory	1	LU	1.5	
443	Process Automation	2	VO	3.0	
443	Process Automation, Laboratory	2	LU	2.5	
438	Process Instrumentation ^{DE}	2	VO	3.0	
438	Process Instrumentation, Laboratory ^{DE}	2	LU	3.0	
					Compulsory
448	Real-Time Bus Systems	1	VO	1.5	elective course
448	Real-Time Bus Systems Laboratory	1		15	elective course
440			20	1.0	Compulsorv
448	Real-Time Operating Systems	2	VO	3.0	course
					Compulsory
448	Real-Time Operating Systems	1	LU	1.5	course
448	Smart Service Development	2	VO	3.0	
448	Smart Service Development	1	UE	1.5	
438	Testing and Verification Methods for Distributed Software Systems	2	VO	3.0	
438	Vibrational Measurements	2	VO	3.0	
438	Vibrational Measurements, Laboratory	1	LU	1.5	440 5
	Total ECTS	5			118.5

Options for the selection of compulsory elective courses:

439

For the major, the compulsory courses must be completed as well as at least another 5 ECTS credit points from the compulsory elective courses (VO+LU if available); for the minor, Embedded Systems (VO+LU) as well as at least another 4.5 ECTS credit points from the compulsory and compulsory elective courses (VO+LU if available) must be completed. Seminar/Project Electronics 4 SP 10

438	Seminar/Project Measurement Techniques	4	SP	10
448	Seminar/Project Technical Informatics	4	SP	10

Mentors: Baunach, Bergmann, Boano, Brenner, Bretterklieber, Macher, Steger, Watzenig, Wegleiter

d Control Sy echnical sys ise in practio ons and the	stems" tems, ce relev	': vant tasks,	
d Control Sy echnical sys ise in praction ons and the	stems" tems, ce relev	': vant tasks,	
	ii piaci	lical implement	ation
2	VO	3.0	
1	UE	1.5	
2	VO	3.0	
1	UE	1.5	
2	VO	3.0	
1	UE	1.5	
2	VO	3.0	
1	UE	1.5	
	2 1 2 1 2 1 2 1 2 1 2	ons and their pract 2 VO 1 UE 2 VO 1 UE 2 VO 1 UE 2 VO 1 UE 2 VO 1 UE	>ns and their practical implement 2 VO 3.0 1 UE 1.5 2 VO 3.0 1 UE 1.5

440	Constral Strategies 2	~		2.0	Compulsory
443	Control Systems 2	2	VÜ	3.0	Compulsory
443	Control Systems 2	1	UE	1.5	elective course
438	Electrical Measuring Instruments, Laboratory	1	LU	1.5	
438	Energy Harvesting Systems	2	VO	3.0	
452	Environmental Sensing	2	VO	3.0	
443	Nonlinear Control Systems, Basics	2	VO	3.0	Compulsory elective course
443	Nonlinear Control Systems Basics	1	UF	15	elective course
438	Image Based Measurement	2	VO	3.0	
438	Image Based Measurement Laboratory	1	111	1.5	
438	Measurement Signal Processing	2	VO	3.0	
443	Mechatronic Systems Modelling	2	VO	3.0	
113	Mechatronic Systems Modelling	1		1.5	
438 138	Measurement 2 ^{DE}	2	VO	3.0	
421	Medalling and Simulation of Electric Drive Systems and Machines	2	VO	2.0	
431	Modelling and Simulation of Electric Drive Systems and Machines,	2		3.0	
431		2		3.0	
438	Multi-Sensor Data Fusion, Laboratory	2	LU	3.0	
443	Multivariable Systems	2	VO	3.0	
443	Multivariable Systems	1	UE	1.5	
443	Nonlinear Control Systems	2	VO	3.0	course Compulsory
443	Nonlinear Control Systems	2	UE	3.0	course
442	Nonlinear Signal Processing	2	VO	3.0	
442	Nonlinear Signal Processing	1	UE	1.5	
437	Numerical Optimisation	2	VO	3.0	
437	Numerical Optimisation	1	UE	1.5	
443	Optimal Feedback Design	2	VO	3.0	
443	Optimal Feedback Design	1	UE	1.5	
443	Optimisation and Control	2	VO	3.0	
443	Optimisation and Control. Laboratory	1	LU	1.5	
438	Photonic Sensors	2	VO	3.0	
438	Photonic Sensors Laboratory	1	10	1.5	
438	Physical Effects for Sensors	2	<u>vo</u>	3.0	
443	Process Automation	2	vo	3.0	
443	Process Automation Laboratory	2	111	2.5	
138	Process Instrumentation ^{DE}	2	VO	2.0	
438 138	Process Instrumentation Laboratory ^{DE}	2	111	3.0	
442	Selected Tenics of Control & Dynamic Systems	2	20 95	2.0	
443	Selected Topics of Control & Dynamic Systems	2	3E	5.0	Compulsory
438	Signal Analysis	2	VO	3.0	course Compulsory
438	Signal Analysis	1	UE	1.5	course
443	State Estimation and Filtering	2	VO	3.0	
443	State Estimation and Filtering	1	UE	1.5	
	Total ECTS				118.0
	Options for the selection of compulsory elective courses:				
	For the minor, all compulsory courses must be completed; for the majo	r, an	additio	nal con	npulsory elective
	block (VO+UE) must be completed.				-
438	Seminar/Project Measurement Techniques	4	SP	10	

443Seminar/Project Modelling, Simulation and Control4SP442Seminar/Project Signal Processing4SP

Mentors: Bergmann, Bretterklieber, Horn, Reichhartinger, Wegleiter

c08 Microelectronics and IC Design

10

10

The elective subject "Microelectronics and IC Design" provides students with the essential knowledge and skills of semiconductor physics and integrated circuit technology for the design of analogue and digital integrated circuits, for which a good physical understanding of the devices is necessary. Lectures and exercises in this subject area enable students to develop electronic devices and systems independently all the way from the formulation of specifications to commissioning. Contemporary concepts (e.g. simulation techniques) as well as the interaction with other systems and the environment (EMC) are of particular importance.

439 A	Advanced Analog IC Design 1	3	VU	4.5	
439 A	Advanced Analog IC Design 2	3	VU	4.5	
439 A	Advanced Layout Techniques	1	VU	1.5	
439 A	Analog Circuit, Laboratory	3	LU	3.0	Compulson
439 A	Analog IC Design 1	2	VO	3.0	course
439 A	Analog IC Design 1	2	UE	3.0	course
439 A	Analog IC Design 2	2	VO	3.0	elective course
439 A	Analog IC Design 2	2	UE	3.0	elective course
439 A	Analog IC Layout 1	2	UE	3.0	
439 (Compact Modelling and Robust IC Design	1	VU	1.5	
439 E	Development of Electronic Systems	4	VO	6.0	
439 E	Digital Circuit, Laboratory	3	LU	4.0	
705 E	Digital System Design	2	VO	3.0	Compulsory course
705 E	Digital System Design	1	KU	2.0	compulsory course
705 E	Digital System Integration and Programming	3	VU	5.0	elective course
439 E	Dimensioning of Electronic Circuits	2	UE	3.0	
439 E	Dimensioning of Electronic Circuits, Laboratory	1	LU	2.0	
439 E	Electromagnetic Compatibility of Electronic Systems	2	VO	3.0	
439 E	Electromagnetic Compatibility of Electronic Systems, Laboratory	1	LÜ	1.5	
439 E	Electromagnetic Compatibility of ICs	1	VO	1.5	
439 E	Electromagnetic Compatibility of ICs. Laboratory	1	LÜ	1.5	
439 E	Evaluation of ICs, Laboratory	3	LU	4.5	
451 l	Introduction to MW Engineering	2	VO	3.0	Compulsory elective course
451 I	Introduction to MW Engineering	1		20	Compulsory
431 I	Microelectronics - Introduction	2		2.0	elective course
400 N	Hardware Description Languages	2	VO	3.0	
448	Hardware Description Languages	1	UE	15	
448 1	Hardware-Software Codesign	2	VO	3.0	
448 F	Hardware-Software Codesign	1	UF	1.5	
439 l	IC Design Fundamentals	2	VO	3.0	Compulsory elective course
400 1	10 Decim Fundamentals	~		2.0	Compulsory
439	C Design Fundamentals	2	UE	3.0	elective course
439	C Design Project Management and Quality	1	VU	1.5	
439 1	Mierro Electromechanical Systems	2	VO	3.0	
430 1	Micro-Electromechanical Systems	2		3.0	
401 1	Nicrowave measurement rechniques	2		3.0	
439 P	Noise and Crosstaik in ICS	2	VO	3.0	
213 F	Physics of Semiconductor Devices	2	VO	3.0	
439 F	Production rest and Design for rest	2 1	VO	3.0 1 E	
409 F	Renable integrated Circuits in Design and Application	ו ס	۷ 0	0.1 20	
401 F	Relacted Tanics of Advanced Analog IC Design	∠ 2		3.U 2.0	
459 3	Selected Topics of REID Sensor Systems	∠ 2		3.U 3.0	
	Total ECTS	2	vO	5.0	120.0

Options for the selection of compulsory elective courses: For the major, all compulsory courses as well as one of the compulsory elective course blocks (each VU/VO+UE) must be completed; for the minor, Analog IC Design 1 VO, IC Design Fundamentals VO and Digital System Design VO must be completed. 439 SP Seminar/Project Electronics 4 10 438 SP 10 Seminar/Project Measurement Techniques 4 448 Seminar/Project Technical Informatics 4 SP 10 Mentors: Auer, Deutschmann, Eichberger, Söser, Steger, Winkler s01 Supplementary Catalogue 505 Advanced and Algorithmic Graph Theory 3 VO 4.5 505 Advanced and Algorithmic Graph Theory 1 UE 1.5 437 Basic Experiments in Electrodynamics^{DE} 2 LU 2.0 708 Computational Geometry^{DE} 2.5 VO 3.0 502 Combinatorial Optimisation 1^{DE} 4 VO 6.0 Combinatorial Optimisation 1^{DE} 1 UE 502 1.5 431 Power Electronics 2 2 VO 30 440 **RFID Systems** 2 VO 3.0 437 Simulation of Static Fields 2 VO 3.0 437 Simulation of Static Fields 1 UE 1.5 Object-Oriented Programming 2DE VO 1.5 711 1 711 Object-Oriented Programming 2DE 2 KU 2.5 **Total ECTS** 33.0 w01 Business, Law, and Management The elective subject "Business, Law and Management" is designed to give students a basic education in the field of management. Students with little economic background who want to learn the basic principles are welcome. 373 Business Sociology^{DE} 2 VO 3.0 VO 374 **Business Informatics** 1 1.5 374 **Business Informatics** 2 UE 3.0 373 Controlling (engl.) 2 VO 3.0 1 UE 373 Controlling (engl.) 1.5 371 **Creativity Techniques** 2 VU 2.0 Compulsory 3 VO 373 Encyclopaedia Business Economics 4.5 course Compulsory 373 **Encyclopaedia Business Economics** 2 UE 3.0 course 372 Entrepreneurship 2 VO 3.0 372 Entrepreneurship 1 UE 1.5 2 372 General Management and Organisation VO 3.0 2 372 General Management and Organisation UE 3.0 3 372 General Management, Case Studies SE 3.0 710 Start-Ups and Small Business Management^{DE} 3 VU 3.0 Start-up GarageDE 372 2 SE 2.0 2 VO 371 Industrial Management and Innovation 3.0 371 Industrial Management and Innovation 1 UE 1.0 371 Industrial Management^{DE} 3 VO 4.5 3 UE 371 Industrial Management^{DE} 3.0 372 Information Management 3 VU 4.0 371 Modelling and Optimisation in Production and Logistic Systems 2 VU 2.0 373 Marketing Management 3 SE 3.0 374 Practice of Digital Transformation^{DE} 1 VO 1.5 Practice of Digital Transformation DE 1 UE 1.5 374 371 Product Innovation Project 3 PR 5.0 374 **Production Planning & Control** 2 VO 3.0 Production Planning & Control 2 374 UE 3.0 Process Management^{DE} SE 372 4 4.0 2 VO 374 Quantitative Methods for Business 3.0

374	Quantitative Methods for Business	3	UE	4.5	
374	Selected Topics of Business Informatics	2	VO	2.0	
374	Selected Topics of Business Informatics	1	UE	1.0	
371	Value Engineering	3	VU	3.0	
940	Diversity Management	2	SE	2.0	
940	Intercultural Social Competence for Work and Life	2	SE	2.0	
940	English for Engineers: Perfection level - Oral Skills (C1/1)	2	SE	2.0	
940	English for Engineers: Perfection level - Professional Meetings (C1/1)	2	SE	2.0	
373	Industrial Law (Labour Law) ^{DE}	2	VO	3.0	
373	Civil Law and Law of Business Enterprises DE	3	VO	4.5	
373	Patent Law ^{DE}	2	VO	3.0	
373	Law of Taxation ^{DE}	2	VO	3.0	
434	Energy and Environment	2	VO	3.0	
638	Financial Management	2	VO	3.0	
432	Design of Nuclear Powerplants ^{DE}	2	VO	3.0	
706	Sustainable Innovation	2	VU	4.0	
433	Complexity and Dynamics in the Information- and Knowledge-Socie- ty ^{DE}	2	SE	2.0	
706	Science, Technology and Society: Interdisciplinary Approaches	2	SE	4.0	
706	Technology – Ethics – Politics ^{DE}	2	VU	4.0	
706	Gender & Technology 1 ^{DE}	2	SE	4.0	
706	Gender & Technology 2 ^{DE}	2	SE	4.0	
706	Technology Assessment ^{DE}	2	SE	4.0	
442	The ICE Age: The History of Information and Communications Engi-	2	VU	3.0	
	neering as an Art, Science, and Pervasive Culture	-			4 47 5
	Total ECTS				147.5

Options for the selection of compulsory elective courses: All compulsory courses must be completed for the minor.

DE: This course is offered in German only.

First column begins with U: This course is offered by the University of Graz, co-registration at this university is required.

First column begins with K: This course is offered by the University of Music and Performing Arts Graz, coregistration at this university is required.

Please note: Possible additions to the catalogues of electives will be announced in the University Gazette of Graz University of Technology.

Instead of the two courses "English for Engineers: Perfection level - Oral Skills (C1/1)" and "English for Engineers: Perfection level - Professional Meetings (C1/1)" other courses for the consolidation of a foreign language (English or German) can also be taken within the framework of the elective subject, up to a total of 3 ECTS credit points.

Courses with the title "Selected Topics of [catalogue name] (subtitle)" are assigned to the respective catalogue of electives, whereby one semester course hour usually corresponds to 1.5 ECTS credit points. These courses have descriptive subtitles and are offered with a total scope of 1-3 semester course hours. VO, VU or SE and/or 1-2 semester course hours UE. Courses with different subtitles must be classified as different courses.

§ 5b Free-choice subject

The courses to be completed as part of the free-choice subject are designed to provide individual emphasis and further development of the students. They may be freely

chosen from the courses offered at any recognised national and international universities and also at universities of applied sciences and universities of teacher education.

Students are recommended to spread free-choice courses over the entire length of the programme.

If a course is assigned the same number of ECTS credit points in all curricula in which it is a compulsory or an elective course, it must be allocated the same number of ECTS credit points when taken as a free-choice subject. If a course has been allocated varying numbers of ECTS credit points, the minimum number of assigned ECTS credit points is to be allocated to the course when taken as a free-choice subject.

Courses that are neither compulsory nor electives are assigned 1 ECTS credit point per semester course hour (SSt). However, if such courses are lecture-type courses (VO), they are assigned 1.5 ECTS credit points for each semester course hour.

§ 5c Stays abroad and practical training

1) Recommended stays abroad

Students of the degree programme are recommended to study abroad for a semester. In this master's degree programme, the 2nd or 3rd semesters are particularly suitable for this purpose. Equivalent modules or courses completed during the stay abroad must be recognised by the officers responsible for study matters. For the recognition of examinations taken during stays abroad, please refer to § 78 (6) of the Universities Act (UG) (pre-notification of recognition).

Furthermore, upon application to the officers responsible for study matters, achievements from shorter study stays abroad, such as active participation in international summer or winter schools, may also be recognised with up to 3 ECTS credit points within the framework of free-choice courses.

2) Internship

Students are encouraged to complete a job-related internship within the framework of the free-choice courses.

Each week of full employment corresponds to 1.5 ECTS credit points. Active participation in an academic event may also count as an internship. This internship must be approved by the officers responsible for study matters and is considered a useful addition to the degree programme. A maximum of half of the free-choice courses can be replaced by this internship.

§ 6 Admission to examinations

Admission to examinations is not subject to any prerequisites.

In order to assist students in completing their degrees in a timely manner, courses with continuous assessment must allow students to submit, supplement or repeat partial course requirements no later than two weeks after the start of the semester following the course.

§ 6a Guidelines for the allocation of places on courses

- (1) If the number of students registered for a course exceeds the number of available places, parallel courses are to be provided. If necessary, these parallel courses may also be provided during the holidays and semester breaks.
- (2) If it is not possible to offer a sufficient number of parallel courses (groups), the students are to be admitted to the course according to the following priority ranking:
 - a) Students who are required to complete the course according to their curriculum have priority.
 - b) Further students are to be ranked according to the sum of the successfully completed courses of the respective degree programme (total ECTS credit points).
 - c) Students who have met the participation requirement at an earlier date are ranked by date.
 - d) Students who have already been deferred once or who have to repeat the course are to be given preferential admission to the next course to be held.
 - e) The further ranking is made according to the grade of the examination or the average grade of the examinations (weighted on the basis of the ECTS credit points) of the respective course(s) that are specified as the participation requirement.
 - f) Students who do not need to complete such courses in order to fulfil their curriculum are only considered based on the number of free places. It is possible to be included on a separate waiting list. The abovementioned provisions apply mutatis mutandis.
- (3) Students who complete a part of their studies at Graz University of Technology in the context of mobility programmes are given priority for up to 10% of the available places.

§ 7 Examination regulations

Courses are evaluated individually.

- 1. Examinations for courses held as lectures (VO) cover the complete content of the course.
- For courses held as lectures with integrated exercises (VU), exercise-based courses (PR, UE), design exercises (KU), laboratory courses (LU), seminartype courses (SE, SP), and excursions (EX), a student's performance is continually assessed on the basis of that student's contributions and/or through accompanying tests. The assessment must always consist of at least two examinations.
- The positive result of examinations is to be assessed as "excellent" (1), "good" (2), "satisfactory" (3) or "sufficient" (4) and the negative result as "unsatisfactory" (5). Specially indicated courses and excursion-type courses are assessed as "successful completed" or as "not completed".
- 4. If a subject area includes separate examinations for the relevant courses, the overall subject grade is to be determined by:
 - a) multiplying the grade of each examination result in connection with the subject area with the ECTS credit points of the corresponding course,
 - b) adding the values calculated according to lit. a.,
 - c) dividing the result of the addition by the sum of the ECTS credit points of the courses, and

d) rounding the result of the division to a whole-numbered grade if required. The grade is rounded up if the decimal place exceeds 0.5. Otherwise, the grade is rounded down.

The types of courses are explained in Part 4 of the Annex.

In addition to the types of courses, the following maximum group sizes are set forth:

- The maximum group size for exercise-based courses (UE), exercise components of lectures with integrated exercises (VU) and for design exercises (KU) is 25 students.
- 2. The maximum group size for projects (PR), seminars (SE) and excursions (EX) is 15 students.
- 3. The maximum group size for laboratory courses (LU) is 6 students.
- 4. The maximum group size for projects (PR) and seminar/projects (SP) is 8 students. Alternatively, the officers responsible for study matters can assign the seminar/project with individual mentoring. In this case, the seminar/project is equivalent to an assignment of 0.5 project hours.

Lectures with integrated exercises (VU) are divided into lecture and exercise components, with 2/3 of the semester course hours (SSt) being allocated to lecture components and 1/3 being allocated to exercise components. The following courses are excluded and divided as follows:

Course	SSt	Туре	ECTS	SSt VO	SSt UE
Advanced Analog IC Design 1	3.0	VU	4.5	1.5	1.5
Advanced Analog IC Design 2	3.0	VU	4.5	1.5	1.5
Compact Modelling and Robust IC Design	1.0	VU	1.5	0.5	0.5
Dynamical Systems	3.0	VU	5.0	1.5	1.5
Embedded Automotive Software	2.0	VU	3.5	1.5	0.5
Embedded Internet	2.0	VU	3.0	1.5	0.5
Methods for IC Evaluation and Failure Analysis	2.0	VU	3.0	1.0	1.0
Microwave Measurement Techniques	2.0	VU	3.0	1.0	1.0
Mixed-Signal Processing Systems Design	2.0	VU	3.5	1.0	1.0
Navigation Systems	2.0	VU	3.0	1.0	1.0
Noise and Crosstalk in ICs	2.0	VU	3.0	1.0	1.0
Power-Aware Computing	2.0	VU	3.0	1.5	0.5
Camera Drones	3.0	VO	5.0	1.0	2.0
Recommender Systems	2.0	VU	3.0	1.0	1.0
RF and Microwave Component Design	2.0	VU	3.0	1.0	1.0
Sensor Networks	2.0	VU	3.0	1.5	0.5
Smart Antennas	2.0	VU	3.5	1.0	1.0
Spoken Language in Human and Human-Computer Dialogue	2.0	VU	3.5	1.0	1.0
Virtual Reality	4.0	VU	7.0	2.0	2.0

§ 7a Final examination before a committee

Admission to the final master's degree examination before a committee requires proof of positive assessment of all examination results according to § 4 and § 5 above as well as proof of positive assessment of the master's thesis.

The final examination before a committee takes place before an board of examiners composed of three persons who are appointed by the officers responsible for study matters. The supervisor of the master's thesis must be part of the board of examiners. In the event of the supervisor's incapacity, he/she can suggest a substitute.

During the final master's degree examination before a committee, students must present their master's thesis written in accordance with the regulations, and must defend the thesis before the members of the board of examiners in the subsequent oral examination. The total duration of the final examination before a committee must not exceed one hour.

§ 7b Degree certificate

The master's degree certificate is comprised of:

- a) the major according to § 5 and its assessment,
- b) the minor including elective subject according to § 5 and its assessment,
- c) the title and the assessment of the master's thesis,
- d) the assessment of the final examination before a committee,
- e) the entirety of the ECTS credit points for successfully completed free-choice courses from the free-choice subject, as defined in § 5b above, and
- f) the overall assessment according to § 73 (3) of the Universities Act (UG).

§ 8 Transitional provisions

As of October 1, 2020, regular students of the Master's Degree Programme Information and Computer Engineering will be subject to the curriculum in the present 2020 version.

The ECTS credit points are calculated according to the current status when issuing the certificate or at the time of recognition of courses for the Master's Degree Programme Information and Computer Engineering.

All courses completed at the time when they were included in the curriculum of the Master's Degree Programme Information and Computer Engineering in the version 2015 or in the curriculum of the Master's Degree Programme Telematics can be recognised for the curriculum 2015 in the current 2020 version. The officers responsible for study matters determine the catalogue of electives to which the courses is assigned in each case, based on a proposal by the student and with the consent of the mentor.

§ 9 Legal validity

This 2015 curriculum in its 2020 version (TUGRAZonline abbreviation 20U) obtains legal validity on October 1, 2020.

Annex to the curriculum of the Master's Degree Programme Information and Computer Engineering

Part 1 of the Annex:

Descriptions of the elective subject

Elective subject: c01 Information Security

Content of elective subject: The elective subject "Information Security" deals with the challenge of ensuring the security of information and communication technology. The focus lies on understanding practical aspects of implementing and using security mechanisms as well as on the thorough knowledge of the principles of these mechanisms.

Learning outcomes: Upon completion of the elective subject, students are familiar with the various aspects of information security and are able to apply them in theory and practice.

Prerequisites for participation: No formal prerequisites; basic knowledge in Information Security is an advantage.

Elective subject: c01a Software Technology

Content: The elective subject "Software Technology" provides advanced techniques relevant to the development of complex and critical software. This includes the fields of analysis, design, validation and verification. Another issue is the application of artificial intelligence techniques in software engineering. Programming languages and compiler construction are also covered.

Learning outcomes: Upon completion of the elective subject, students are familiar with the various aspects of software technology and are able to apply them in theory and practice.

Prerequisites for participation: No formal prerequisites; basic knowledge in Information Security is an advantage.

Elective subject: c02 Visual Computing

Content: The elective subject "Visual Computing" provides students with a deeper knowledge of computer graphics, image processing, geometric modelling, virtual and augmented reality and information visualisation. In addition to mastering the theoretical basics of the subject area, particular emphasis is placed on practical application. The application areas range from medicine to industrial automation.

Learning outcomes: Upon completion of the elective subject, students are able to independently develop imaging and image processing procedures in various fields of application, as well as to propose and implement solutions.

Prerequisites for participation: No formal prerequisites; basic knowledge in Computer Graphics and Computer Vision is an advantage.

Elective subject: c03 Robotics and Computational Intelligence

Content: The elective subject "Robotics and Computational Intelligence" provides students with access to the most important currently known methods of making machines "intelligent", as well as practical experience with state-of-the-art software from the fields of machine learning, neural networks, simulation and modelling of technical systems, navigation and robot vision. Due to the interdisciplinary nature of the subject area, the elective subject includes courses from the fields of mechanical engineering, electrical engineering and computer science. The focus of the elective subject lies on the practical implementation of the contents learned.

Learning outcomes: Upon completion of the elective subject, students are familiar with the most important algorithms and techniques as well as the construction of "intelligent" machines. They know the advantages and disadvantages of the various (learning) algorithms and are able to solve practical and theoretical problems independently and to design a robot for an assigned task and program it accordingly.

Prerequisites for participation: No formal prerequisites; basic knowledge in knowledge processing, computational intelligence, modelling and simulation is an advantage.

Elective subject: c04 Signal Processing and Human Communication

Content: The elective subject "Signal Processing and Human Communication" focuses on hearing, seeing, speaking, and thinking as essential aspects of life. The acquisition and processing of the associated signals requires knowledge of the physics of sound wave propagation, the analysis, synthesis and coding of signals, automatic pattern recognition including models of human perception, and the understanding and generation of spoken or written language in automatic dialogue.

Learning outcomes: Upon completion of the elective subject, students are familiar with the essential algorithms and techniques for the acquisition of speech and biosignals as well as the algorithms to process them and are able to develop highly integrated systems in the field of information and communication technology.

Prerequisites for participation: No formal prerequisites; basic knowledge in Signal Processing is an advantage.

Elective subject: c05 Communications and Mobile Computing

Content: Everyday objects and environments are increasingly equipped with wirelessly networked computer systems that use sensors to detect conditions and automatically adapt to them. This development is reflected in concepts such as the Internet of Things or cyber-physical systems. The elective subject "Communications and Mobile Computing" deals with the basics and applications of such systems, from radiobased communication technologies, self-organising sensor networks and their integration into the Internet, to the development of smart services and machine learning methods for resource-limited mobile systems.

Learning outcomes: Upon completion of the elective subject, students are familiar with physics, simulation and the implementation of wireless communication as well as with the concepts of context- and location-based applications. They are able to create

and implement mobile wireless communication concepts optimised for the respective application.

Prerequisites for participation: No formal prerequisites; basic knowledge in electrodynamics and software development is an advantage.

Elective subject: c06 Embedded and Automotive Systems

Content: The courses in this catalogue provide and deepen theoretical and practical knowledge about design, implementation and analysis of embedded systems. Hardware, software and their co-design are treated as well as their application in electronic and mechanical contexts, for example in vehicles, cyber-physical systems, sensors, actuators or the Internet of Things.

Learning outcomes: Upon completion of the elective subject, students are able to understand embedded systems with their complex interaction possibilities and to independently develop solutions with context-, location-, and performance-based methods according to the specific requirements.

Prerequisites for participation: No formal prerequisites; basic knowledge of hardware and software systems and interprocess communication is an advantage.

Elective subject: c07 Measurement and Control Systems

Content: The elective subject "Measurement and Control Systems" provides students with a theoretical and practical basic framework not only for the acquisition of physical measured variables, taking into account electronics with regard to increased measurement accuracy, self-diagnosis capability and reduced susceptibility to faults, but also for the analysis, creation of models and simulation of technical systems, right through to the design and optimisation of linear and non-linear controls.

Learning outcomes: Upon completion of the elective subject, students are able to analyse and model processes, select or develop suitable sensors and design controllers using modern mathematical methods.

Prerequisites for participation: No formal prerequisites; basic knowledge of linear algebra and signal analysis is an advantage.

Elective subject: c08 Microelectronics and IC Design

Content: The elective subject "Microelectronics and IC Design" provides students with the essential knowledge and skills of semiconductor physics and integrated circuit technology for the design of analogue and digital integrated circuits, whereby a good physical understanding of the devices is necessary. Lectures and exercises in this subject area enable students to develop electronic devices and systems independently all the way from the formulation of specifications to commissioning. Contemporary concepts (e.g. simulation techniques) as well as the interaction with other systems and the environment (EMC) are of particular importance.

Learning outcomes: Upon completion of the elective subject, students have acquired the necessary knowledge to be able to develop integrated analogue and/or digital circuits independently.

Prerequisites for participation: No formal prerequisites; basic knowledge of semiconductor physics and electronics is an advantage.

Supplementary Catalogue: s01 Supplementary Catalogue

Content: The supplementary catalogue offers on the one hand courses for the deepening of mathematical basics, on the other hand supplementary topics which are relevant for several other subject areas and can be completed within the scope of the elective.

Prerequisites for participation: No formal prerequisites.

Non-technical elective subject: b01 Business, Law, and Management

Content: The elective subject "Business, Law, and Management" cannot be chosen as a major. When chosen as a minor, the focus lies on the basics of setting up and running a business. In addition, management tools, aspects of ethics, the environment and sustainability, legal issues and finally a deepening of language training are offered to complement the options.

Learning outcomes: Upon completion of the minor elective subject, students have acquired the necessary basics to successfully assume management functions in companies.

Prerequisites for participation: No formal prerequisites.

Part 2 of the Annex:

Recognition and equivalence list

Courses for which the equivalence or recognition is defined in this part of the Annex to the curriculum do not require separate recognition by the officers responsible for study matters. Reference is made to the possibility of individual recognition according to § 78 of the Universities Act (UG) by decisions from the officers responsible for study matters.

An equivalence list defines the equal value of successfully completed courses of this curriculum and the previous curriculum. This equivalence applies in both directions, that is, successfully completed courses of the previous curriculum may be credited in this curriculum and successfully completed courses of this curriculum may be credited in the previous curriculum.

Courses of Graz University of Technology that are the same with regard to name and type, the number of ECTS credit points and the number of semester course hours are considered to be equivalent, and are thus not explicitly listed in the equivalence list.

Equivalence list

Present curriculum for 2015	Previous curriculum for 2015						
New course	SSt	Тур е	EC TS	Previous course	SSt	Тур е	EC TS
Mobile Security	2	VO	3.0	Advanced Computer Networks	2	VO	3.0

Mobile Security 1 KU 2.0 Advanced Computer Networks 1 KU 2.0 Advanced Layout Techniques 1 VU 1.5 Analogi C Layout 1 KU 2.0 3.0 Cryptography 1 KU 2.0 Applied Cryptography 1 KU 2.0 Cryptanalysis 1 KU 2.0 Applied Cryptography 2 VO 3.0 Advanced Topics in Artificial Intelli- gence 1 KU 2.0 Autonomously Learning Systems 1 KU 2.0 Computational Geometry 2.5 VO 3.0 Computational Geometry 2 VO 3.0 Computer Vision 2 1.5 VU 2.5 Computer Vision 2 1.5 VU 2.5 Construction of Mobile Robots 2 PR 5.0 Construction of Mobile Robots 2 PR 1.5 VU 2.5 Computer Vision 2 1.5 VU 2.5 Computer Staphice 2 VD 3.0 Eigentromagnetic Construction of Mobile Ro								
Advanced Layout Techniques 1 VU 1.5 Analog IC Layout 2 1 VU 1.5 Cryptography 1 KU 20 Applied Cryptography 2 VO 3.0 Cryptography 1 KU 2.0 Applied Cryptography 2 2 VO 3.0 Cryptanalysis 1 KU 2.0 Applied Cryptography 2 1 KU 2.00 Advanced Topics in Artificial Intelli- gence 1 UE 2.0 Autonomously Learning Systems 1 KU 2.00 Computational Geometry 2.5 VO 3.0 Computatroinal Geometry 1 KU 1.5 Computer Vision 2 1.5 VU 2.5 Computer Vision 2 1.5 VU 2.6 Creativity Techniques 1 VU 2.5 Computer Graphics 2 1.5 VU 2.6 0.0 1.5 VU 2.6 0.0 1.5 VU 2.6 0.0 1.5 VU 2.6 0.0 1.5 VU <td>Mobile Security</td> <td>1</td> <td>KU</td> <td>2.0</td> <td>Advanced Computer Networks</td> <td>1</td> <td>KU</td> <td>2.0</td>	Mobile Security	1	KU	2.0	Advanced Computer Networks	1	KU	2.0
Cryptography2VO3.0Applied Cryptography2VO3.0Cryptography1KU2.0Applied Cryptography 22VO3.0Cryptanalysis1KU2.0Applied Cryptography 21KU2.0Cryptanalysis1KU2.0Applied Cryptography 21KU2.0SectorAdvanced Topics in Artificial Intelli- gence2VO3.0Autonomously Learning Systems2VO3.0Advanced Topics in Artificial Intelli- gence2VO3.0Computational Geometry1UE2.0Computer Vision 21.5VU2.5Computer Graphics 21.5VU2.5Computer Graphics 21.5VU2.5Computer Graphics 21.5VU2.5Construction of Mobile Robots2PT5.0Creativity Techniques1UE1.5Optimal Feedback Design2VO3.0Design of Optimal Systems1UE1.5Audio Signal Processing Applications2VO3.0Digital Audio Engineering, Labora- toy2VO3.0Intelligen Systems2VO3.0Digital Audio Engineering, Labora- toy2VO3.0Intelligen Systems2VO3.0Digital Audio Engineering, Labora- toy2VO3.0Intelligen Systems2VO3.0Electromagnetic Compatibility of Elec- toryVO3.0Electr	Advanced Layout Techniques	1	VU	1.5	Analog IC Layout 2	1	VU	1.5
Cryptanalysis1KU2.0Applied Cryptography1KU2.0Cryptanalysis1KU2.0Applied Cryptography 22VO3.0Cryptanalysis1KU2.0Applied Cryptography 21KU2.0Advanced Topics in Artificial Intelli- gence2VO3.0Autonomously Learning Systems1KU2.0Computational Geometry2.5VO3.0Computational Geometry1KU2.0Computer Vision 21.5VU2.5Computer Graphics 21.5VU2.5Computer Graphics 21.5VU2.5Computer Graphics 21.5VU2.0Creativity Techniques1VU2.5Construction of Mobile Robots2PR5.0Creativity Techniques2VU2.0Creativity Techniques1VU2.51.5VU2.01.5VU2.01.5VU3.0Optimal Feedback Design1VU2.0Creativity Techniques1VU3.01.5VU3.0Optimal Feedback Design1VU1.5VU2.0Creativity Techniques1VU3.0Optimal Feedback Design1VU1.5VU3.0Electromagnetic Compatibility of Electro2.VO3.0Electromagnetic Compatibility of Electro2VU3.0Electromagnetic Compatibility of Electro2.VU3.0Electromagn	Cryptography	2	VO	3.0	Applied Cryptography	2	VO	3.0
Cryptanalysis2VO3.0Applied Cryptography 22VO3.0Cryptanalysis1KU2.0Applied Cryptography 21KU2.0Advanced Topics in Artificial Intelli- gence1KU2.0Autonomously Learning Systems1KU2.0Advanced Topics in Artificial Intelli- gence1KU2.0Autonomously Learning Systems1KU2.0Computational Geometry2.5VO3.0Computational Geometry2VO3.0Computer Graphics 21.5VU2.5Computer Vision 21.5VU2.5VOConstruction of Mobile Robots2PT5.0Construction of Mobile Robots2PR5.0Creativity Techniques1VU2.5Construction of Mobile Robots2VO3.0Optimal Feedback Design2VU2.0Creativity Techniques1UE1.5Audio Signal Processing Applications2VO3.0Digital Audio Engineering, Labora- tory2VO3.0Electromagnetic Compatibility of Electrom regineering Intergeneurship and Start-Up of toring Systems2VO3.0Entregeneurship and Start-Up of corporation2VO3.0Intelligent Systems1KU2.0VO3.0Expert Systems1KU2.0Intelligent Systems2VO3.0Expert Systems1KU2.0Intelligent Systems<	Cryptography	1	KU	2.0	Applied Cryptography	1	KU	2.0
Cryptanalysis1KU2.0Applied Cryptography 21KU2.0Advanced Topics in Artificial Intelli- gence1UE2VO3.0Autonomously Learning Systems1KU2.0Advanced Topics in Artificial Intelli- gence1UE2.0Autonomously Learning Systems1KU2.0Computational Geometry2.5VO3.0Computational Geometry1UE1.5VU2.5Computer Vision 21.5VU2.5Computer Graphics 21.5VU2.5Computer Graphics 21.5VU2.5Construction of Mobile Robots2PT5.0Construction of Mobile Robots2PR5.0Creativity Techniques1UE1.5Design of Optimal Systems1UE1.5Optimal Feedback Design1UE1.5Design of Optimal Systems1UE1.5Audio Signal Processing Applications2VO3.0Digital Audio Engineering Labora- Digital Audio Engineering Labora- Corporation2VO3.0Entrepreneurship1UE1.5Entrepreneurship and Start-Up of Corporation2VO3.0Entrepreneurship1UE1.5Entrepreneurship and Start-Up of Corporation2VO3.0Intelligent Systems1UE1.5Entrepreneurship and Start-Up of Corporation2VO3.0Intelligent Systems1UE1.5E	Cryptanalysis	2	VO	3.0	Applied Cryptography 2	2	VO	3.0
Advanced Topics in Artificial Intelli- gence 2 VO 3.0 Autonomously Learning Systems 2 VO 3.0 Advanced Topics in Artificial Intelli- gence 1 UE 2.0 Autonomously Learning Systems 1 KU 2.0 Computational Geometry 2.5 VO 3.0 Computational Geometry 2 VO 3.0 Computer Vision 2 1.5 VU 2.5 Computer Graphics 2 1.5 VU 2.5 Construction of Mobile Robots 2 PT 5.0 Construction of Mobile Robots 2 PR 5.0 Creativity Techniques 1 UE 1.5 VU 2.5 Creativity Techniques 1 UE 1.5 Optimal Feedback Design 1 UE 1.5 Design of Optimal Systems 2 VO 3.0 Adudio Signal Processing Applications 2 VO 3.0 Digital Audio Engineering 2.1 VO 3.0 Enterpeneurship 2 VO 3.0 Electronic Systems 2 VO 3.0 Entrepreneurship 1 UE 1.5 <td< td=""><td>Cryptanalysis</td><td>1</td><td>KU</td><td>2.0</td><td>Applied Cryptography 2</td><td>1</td><td>KU</td><td>2.0</td></td<>	Cryptanalysis	1	KU	2.0	Applied Cryptography 2	1	KU	2.0
Advanced Topics in Artificial Intelli- gence 1 LE 2.0 Autonomously Learning Systems 1 KD 2.0 Computational Geometry 2.5 VO 3.0 Computational Geometry 2 VO 3.0 Computer Vision 2 1.5 VU 2.5 Computer Graphics 2 1.5 VU 2.5 Computer Graphics 2 1.5 VU 2.5 Computer Graphics 2 1.5 VU 2.5 Construction of Mobile Robots 2 PT 5.0 Creativity Techniques 1 UE 1.5 Optimal Feedback Design 1 UE 1.5 Digital Audio Engineering 2 2 VO 3.0 Audio Signal Processing Applications 2 VO 3.0 Digital Audio Engineering 2 2 VO 3.0 Enterpreneurship 2 VO 3.0 Electromagnetic Compatibility of Lecc Corporation 2 VO 3.0 Enterpreneurship and Start-Up of Corporation 2 VO 3.0 Enterpreneurship and Start-Up of Corporation <t< td=""><td>Advanced Topics in Artificial Intelli- gence</td><td>2</td><td>VO</td><td>3.0</td><td>Autonomously Learning Systems</td><td>2</td><td>VO</td><td>3.0</td></t<>	Advanced Topics in Artificial Intelli- gence	2	VO	3.0	Autonomously Learning Systems	2	VO	3.0
Computational Geometry 2.5 VO 3.0 Computational Geometry 2 VO 3.0 Computer Vision 2 1.5 VU 2.5 Computer Vision 2 1.5 VU 2.5 Computer Graphics 2 1.5 VU 2.5 Computer Graphics 2 1.5 VU 2.5 Construction of Mobile Robots 2 PT 5.0 Construction of Mobile Robots 2 PR 5.0 Creativity Techniques 1 UZ VC Creativity Techniques 1 UZ 1.5 Optimal Feedback Design 1 UE 1.5 Design of Optimal Systems 1 UZ 1.5 Audio Signal Processing Applications 2 VO 3.0 Digital Audio Engineering, Labora- 2 VO 3.0 Electromagnetic Compatibility of Electromagnet Compatibilit	Advanced Topics in Artificial Intelli- gence	1	UE	2.0	Autonomously Learning Systems	1	KU	2.0
Image: Computational Geometry1UE1.5Computer Vision 21.5VU2.5Computer Vision 21.5VU2.5Computer Graphics 21.5VU2.5Comstruction of Mobile Robots2PR5.0Construction of Mobile Robots2PT5.0Construction of Mobile Robots2PR5.0Creativity Techniques1UE1.5VU2.0Creativity Techniques1UE1.5Optimal Feedback Design1UE1.5Design of Optimal Systems2VO3.0Optimal Feedback Design1UE1.5Design of Optimal Systems2VO3.0Audio Signal Processors Laboratory2LU3.0Digital Audio Engineering, Labora- torvic Systems2VO3.0Enterpreneurship2VO3.0Enterpreneurship and Start-Up of Corporation2VO3.0Entrepreneurship1UE1.5Entrepreneurship and Start-Up of Corporation1UE1.5Intelligent Systems1KU2.0Expert Systems2VO3.0Intelligent Systems1KU2.0Expert Systems2VO3.0Intelligent Systems1KU2.0Expert Systems2VO3.0Intelligent Systems1KU2.0Expert Systems2VO3.0Intelligent Systems1KU2.0Expert Systems1 </td <td>Computational Geometry</td> <td>2.5</td> <td>VO</td> <td>3.0</td> <td>Computational Geometry</td> <td>2</td> <td>VO</td> <td>3.0</td>	Computational Geometry	2.5	VO	3.0	Computational Geometry	2	VO	3.0
Computer Vision 2 1.5 VU 2.5 Computer Graphics 2 1.5 VU 2.5 Construction of Mobile Robots 2 PT 5.0 Construction of Mobile Robots 2 PK 5.0 Creativity Techniques 1 VU 2.0 Creativity Techniques 1 VU 1.5 Optimal Feedback Design 1 VU 2.0 Creativity Techniques 1 UE 1.5 Audio Signal Processing Applications 2 VO 3.0 Digital Audio Engineering, Labora- tory 2.0 VO 3.0 Electromagnetic Compatibility of Elec- troic Systems 2 VO 3.0 Electronic Systems 2 VO 3.0 Entrepreneurship 1 UE 1.5 Entrepreneurship and Start-Up of Corporation 2 VO 3.0 Intelligent Systems 1 KU 2.0 VO 3.0 Expert Systems 1 KU 2.0 3.0 Intelligent Systems 1 KU 2.0 So Expert Systems					Computational Geometry	1	UE	1.5
Computer Graphics 21.5VU2.5Computer Graphics 21.5VU2.5Construction of Mobile Robots2PR5.0Construction of Mobile Robots2PR5.0Creativity Techniques2VU2.0Creativity Techniques1UC1.5Optimal Feedback Design1UE1.5Design of Optimal Systems2VO3.0Audio Signal Processing Applications2VO3.0Digital Audio Engineering 22VO3.0Audio Signal Processors Laboratory2LU3.0Digital Audio Engineering, Labora- tronic Systems2VO3.0Electromagnetic Compatibility of Elec- tonic Systems2VO3.0Electronic Systems2VO3.0Entrepreneurship2VO3.0Entrepreneurship and Start-Up of Corporation2VO3.0Intelligent Systems1KU2.0Expert Systems1KU2.0Intelligent Systems1KU2.0Expert Systems1KU2.0Advanced and Algorithmic Graph Theory3SE3.0General Management, Case Studies2VO3.0Image and Video Understanding1KU2.0Image Understanding1KU2.0Image and Video Understanding1KU2.0Image Understanding1KU2.0Image and Video Understanding1KU2.0Image Understanding1 <td< td=""><td>Computer Vision 2</td><td>1.5</td><td>VU</td><td>2.5</td><td>Computer Vision 2</td><td>1.5</td><td>VU</td><td>2.5</td></td<>	Computer Vision 2	1.5	VU	2.5	Computer Vision 2	1.5	VU	2.5
Construction of Mobile Robots2PT5.0Construction of Mobile Robots2PR5.0Creativity Techniques1VO1.5Optimal Feedback Design2VO3.0Design of Optimal Systems1UE1.5Audio Signal Processors Laboratory2VO3.0Digital Audio Engineering 22VO3.0Audio Signal Processors Laboratory2LU3.0Digital Audio Engineering 22VO3.0Electromagnetic Compatibility of Elector2VO3.0Electromagnetic Compatibility of 2VO3.0Entrepreneurship2VO3.0Entrepreneurship and Start-Up of Corporation2VO3.0Entrepreneurship1UE1.5Entrepreneurship and Start-Up of Corporation1UE1.5Intelligent Systems1KU2.0Expert Systems1KU2.03.0Intelligent Systems1KU2.0Sace Systems1KU2.03.0Intelligent Systems1KU2.0Sace Systems1KU2.03.0Intelligent Systems3SE3.0General Management, Case Studies1VO1.5General Management, Case Studies3SE3.0Graph Theoretic Algorithms3VO4.5Advanced and Algorithmic Graph Theory1UE1.5Information and Computers1KU2.0Inage and Video Underst	Computer Graphics 2	1.5	VU	2.5	Computer Graphics 2	1.5	VU	2.5
Creativity Techniques2VU2.0Creativity Techniques1VO1.5Optimal Feedback Design2VO3.0Design of Optimal Systems1UE1.5Audio Signal Processing Applications2VO3.0Digital Audio Engineering 22VO3.0Audio Signal Processors Laboratory2LU3.0Digital Audio Engineering, Laboratory2LU3.0Electromagnetic Compatibility of Electory2VO3.0Electromagnetic Compatibility of Electory2VO3.0Entrepreneurship2VO3.0Enterpreneurship and Start-Up of Corporation2VO3.0Entrepreneurship1UE1.5Enterpreneurship and Start-Up of Corporation2VO3.0Intelligent Systems2VO3.0Expert Systems2VO3.0Intelligent Systems1KU2.0Expert Systems2VO3.0Intelligent Systems3SE3.0General Management, Case Studies1VO1.5Automotive Engineering for Electrical, Information and Computer Engineering3VO4.5Graph Theoretic Algorithms3VO4.5Advanced and Algorithmic Graph Theory1UE1.5Image Understanding1UE1.5Image and Video Understanding1VU4.5Image Understanding1UE1.5Practice of Digital Transformation1VU4.5<	Construction of Mobile Robots	2	PT	5.0	Construction of Mobile Robots	2	PR	5.0
ImageImageCreativity Techniques1UE1.5Optimal Feedback Design1UE1.5Design of Optimal Systems2VO3.0Audio Signal Processing Applications2VO3.0Digital Audio Engineering 22VO3.0Audio Signal Processors Laboratory2LU3.0Digital Audio Engineering, Labora- tory2LU3.0Electromagnetic Compatibility of Elec- tronic Systems2VO3.0Electromagnetic Compatibility of Electronic Systems2VO3.0Entrepreneurship2VO3.0Entrepreneurship and Start-Up of Corporation1UE1.5Intelligent Systems2VO3.0Expert Systems1KU2.0Intelligent Systems1KU2.0S.0Entrepreneurship and Start-Up of Corporation1KU2.0Intelligent Systems1KU2.0S.0Expert Systems1KU2.0Automotive Engineering for Electrical, Information and Computer Engineering2VO3.0General Management, Case Studies1VO1.5General Management, Case Studies3SE3.0General Management, Case Studies2UE3.0Advanced and Algorithmic Graph Theory1UE1.5Graph Theoretic Algorithms1UE1.5Image and Video Understanding1VU2.0Information Management1VU2.03.0<	Creativity Techniques	2	VU	2.0	Creativity Techniques	1	VO	1.5
Optimal Feedback Design2VO3.0Design of Optimal Systems2VO3.0Optimal Feedback Design1UE1.5Design of Optimal Systems1UE1.5Audio Signal Processors Laboratory2LU3.0Digital Audio Engineering Laboratory, Laboratory2LU3.0Electromagnetic Compatibility of Elec- tonic Systems2VO3.0Electronagnetic Compatibility of Elec- tonic Systems2VO3.0Entrepreneurship2VO3.0Entrepreneurship and Start-Up of Corporation2VO3.0Entrepreneurship1UE1.5Entrepreneurship and Start-Up of Corporation1UE1.5Intelligent Systems2VO3.0Expert Systems1KU2.0Automotive Engineering for Electrical ing2VO3.0General Management, Case Studies2VO3.0General Management, Case Studies3SE3.0General Management, Case Studies2UC3.0Advanced and Algorithmic Graph Theory1UE1.5Graph Theoretic Algorithms1UC1.5Inage and Video Understanding1KU2.0Inage Understanding1KU2.0VO3.0Inage and Video Understanding1KU2.0Inage Understanding1KU2.01.5Inage and Video Understanding1KU2.0Inage Understanding1KU2.0<					Creativity Techniques	1	UE	1.5
Optimal Feedback Design1UE1.5Design of Optimal Systems1UE1.5Audio Signal Processing Applications2VO3.0Digital Audio Engineering 22VO3.0Audio Signal Processors Laboratory2LU3.0Digital Audio Engineering, Laboratory2LU3.0Electromagnetic Compatibility of Electoric Systems2VO3.0Electronic Systems2VO3.0Entrepreneurship2VO3.0Entrepreneurship and Start-Up of Corporation2VO3.0Intelligent Systems2VO3.0Expert Systems2VO3.0Intelligent Systems2VO3.0Expert Systems1KU2.0VO3.0Intelligent Systems2VO3.0Expert Systems1KU2.0VO3.0Intelligent Systems1KU2.0Expert Systems2VO3.0Intelligent Systems2VO3.0Expert Systems1KU2.0Automotive Engineering for Electrical, Information and Computer Engineering2VO3.0General Management, Case Studies1VO1.5Advanced and Algorithmic Graph Theory1UE1.5Graph Theoretic Algorithms1UE1.5Information And Algorithmic Graph Theory1KU2.0Image and Video Understanding1VO3.0Inage and Video Understanding1<	Optimal Feedback Design	2	VO	3.0	Design of Optimal Systems	2	VO	3.0
Audio Signal Processing Applications2VO3.0Digital Audio Engineering 22VO3.0Audio Signal Processors Laboratory2LU3.0Digital Audio Engineering, Laboratory2LU3.0Electromagnetic Compatibility of Elec2VO3.0Electronagnetic Compatibility of 2VO3.0Entrepreneurship2VO3.0Entrepreneurship and Start-Up of Corporation2VO3.0Entrepreneurship1UE1.5Entrepreneurship and Start-Up of Corporation1UE1.5Intelligent Systems2VO3.0Expert Systems2VO3.0Intelligent Systems1KU2.0Expert Systems1KU2.0Automotive Engineering for Electrical, Information and Computer Engineer- ing2VO3.0Automotive Engineering for Electrical Engineering and Telematics1VO1.5General Management, Case Studies3SE3.0General Management, Case Studies1VO1.5Advanced and Algorithmic Graph Theory1UE1.5Graph Theoretic Algorithms1UE1.5Image and Video Understanding1KU2.0Image Understanding1KU2.0VO3.0Image and Video Understanding1VO1.5Information and Communication Management1VO1.5Practice of Digital Transformation1UE1.5Information Managemen	Optimal Feedback Design	1	UE	1.5	Design of Optimal Systems	1	UE	1.5
Audio Signal Processors Laboratory2LU3.0Digital Audio Engineering, Labora- tory2LU3.0Electromagnetic Compatibility of Elec- tonic Systems2VO3.0Electronic Systems2VO3.0Entrepreneurship2VO3.0Entrepreneurship and Start-Up of Corporation2VO3.0Entrepreneurship1UE1.5Entrepreneurship and Start-Up of Corporation1UE1.5Intelligent Systems2VO3.0Expert Systems2VO3.0Intelligent Systems1KU2.0Expert Systems2VO3.0General Management, Case Studies3SE3.0General Management, Case Studies1VO1.5General Management, Case Studies3VO4.5Graph Theoretic Algorithms1UE1.5Indogram1UE1.5Graph Theoretic Algorithms1UE1.5Inage and Video Understanding1KU2.0Image Understanding1KU2.0Information Management2VO3.0Image Understanding1KU2.01.5Inage and Video Understanding1KU2.0Image Understanding1KU2.01.5Information Management1VO1.5Information and Communication1KU2.01.5Image and Video Understanding1KU2.0Information Management <td>Audio Signal Processing Applications</td> <td>2</td> <td>VO</td> <td>3.0</td> <td>Digital Audio Engineering 2</td> <td>2</td> <td>VO</td> <td>3.0</td>	Audio Signal Processing Applications	2	VO	3.0	Digital Audio Engineering 2	2	VO	3.0
Lectromagnetic Compatibility of Elec- tronic SystemsLLot toryLLot toryLLot toryLLot toryLLL	Audio Signal Processors Laboratory	2		3.0	Digital Audio Engineering, Labora-	2	LU	3.0
Electromagnetic Compatibility of Elec. tronic Systems2VO3.0Electromagnetic Compatibility of Electronic Systems2VO3.0Entrepreneurship2VO3.0Entrepreneurship and Start-Up of Corporation2VO3.0Entrepreneurship1UE1.5Entrepreneurship and Start-Up of Corporation1UE1.5Intelligent Systems2VO3.0Expert Systems2VO3.0Intelligent Systems1KU2.0Expert Systems1KU2.0Automotive Engineering for Electrical, Information and Computer Engineering2VO3.0Automotive Engineering for Electrical Engineering and Telematics2VO3.0General Management, Case Studies3SE3.0General Management, Case Studies1VO1.5Advanced and Algorithmic Graph Theory1UE1.5Graph Theoretic Algorithms1UE1.5Image and Video Understanding1KU2.0Inage Understanding1KU2.01.5Image and Video Understanding1VO1.5Information and Communication Management1VO1.5Information Management3VU4.0Information and Communication Management1VO1.5Information Management3VU4.0Information and Communication Management1VO1.5Information Management3VU4.0I		-		0.0	tory	_		0.0
Entrepreneurship2VO3.0Entrepreneurship and Start-Up of Corporation2VO3.0Entrepreneurship1UE1.5Entrepreneurship and Start-Up of Corporation1UE1.5Intelligent Systems2VO3.0Expert Systems2VO3.0Intelligent Systems1KU2.0Expert Systems1KU2.0Automotive Engineering for Electrical information and Computer Engineering2VO3.0Expert Systems1VO1.5General Management, Case Studies3SE3.0General Management, Case Studies1VO1.5Advanced and Algorithmic Graph Theory3VO4.5Graph Theoretic Algorithms1UE1.5Image and Video Understanding1KU2.0Image Understanding1KU2.0Information Management1VO1.5Information and Communication Management1VO1.5Information Management1VO1.5Information and Communication Management1VO1.5Information Management1UE1.5Information and Communication Management1VO1.5Practice of Digital Transformation1UE1.5Information and Communication Management1VO1.5Information Management2VO3.0Information Management2VO3.0Privacy Enhancing Technologies<	Electromagnetic Compatibility of Elec- tronic Systems	2	VO	3.0	Electromagnetic Compatibility of Electronic Systems	2	VO	3.0
Entrepreneurship1UE1.5Entrepreneurship and Start-Up of Corporation1UE1.5Intelligent Systems2VO3.0Expert Systems2VO3.0Intelligent Systems1KU2.0Expert Systems1KU2.0Automotive Engineering for Electrical, Information and Computer Engineering2VO3.0Automotive Engineering for Electrical Engineering and Telematics2VO3.0General Management, Case Studies3SE3.0General Management, Case Studies1VO1.5General Management, Case Studies3SE3.0General Management, Case Studies2UE3.0Advanced and Algorithmic Graph Theory1UE1.5Graph Theoretic Algorithms3VO4.5Image and Video Understanding2VO3.0Image Understanding1KU2.0Practice of Digital Transformation1KU2.0Information and Communication Management1VO1.5Information Management3VO3.0IT Security2VO3.0Privacy Enhancing Technologies2VO3.0IT Security2VO3.0Privacy Enhancing Technologies1KU2.0IT Security2VO3.0Privacy Enhancing Technologies1KU2.0IT Security2VO3.0Privacy Enhancing Technologies1KU2.0 <td>Entrepreneurship</td> <td>2</td> <td>VO</td> <td>3.0</td> <td>Entrepreneurship and Start-Up of Corporation</td> <td>2</td> <td>VO</td> <td>3.0</td>	Entrepreneurship	2	VO	3.0	Entrepreneurship and Start-Up of Corporation	2	VO	3.0
Intelligent Systems2VO3.0Expert Systems2VO3.0Intelligent Systems1KU2.0Expert Systems1KU2.0Automotive Engineering for Electrical Information and Computer Engineering2VO3.0Automotive Engineering and Telematics2VO3.0General Management, Case Studies3SE3.0General Management, Case Studies1VO1.5General Management, Case Studies3SE3.0General Management, Case Studies2UE3.0Advanced and Algorithmic Graph Theory1UE1.5Graph Theoretic Algorithms3VO4.5Madvanced and Video Understanding2VO3.0Image Understanding1UE1.5Image and Video Understanding1KU2.0Image Understanding1KU2.0Practice of Digital Transformation1VO1.5Information and Communication Management1VO1.5Information Management3VU4.0Information Management1VO1.5Practice of Digital Transformation1UE1.5Information Management1VO1.5Information Management3VU4.0Information Management1VO1.5Privacy Enhancing Technologies1KU2.0IT Security2VO3.0Privacy Enhancing Technologies1KU2.0IT Securit	Entrepreneurship	1	UE	1.5	Entrepreneurship and Start-Up of Corporation	1	UE	1.5
Intelligent Systems1KU2.0Expert Systems1KU2.0Automotive Engineering for Electrical Information and Computer Engineering2VO3.0Automotive Engineering for Electrical Engineering and Telematics2VO3.0General Management, Case Studies3SE3.0General Management, Case Studies1VO1.5General Management, Case Studies3SE3.0General Management, Case Studies2UE3.0Advanced and Algorithmic Graph Theory3VO4.5Graph Theoretic Algorithms1UE1.5Advanced and Algorithmic Graph 	Intelligent Systems	2	VO	3.0	Expert Systems	2	VO	3.0
Automotive Engineering for Electrical, Information and Computer Engineering2VO3.0Automotive Engineering for Electrical Engineering and Telematics2VO3.0General Management, Case Studies3SE3.0General Management, Case Studies1VO1.5General Management, Case Studies3SE3.0General Management, Case Studies2UE3.0Advanced and Algorithmic Graph Theory3VO4.5Graph Theoretic Algorithms1UE1.5Advanced and Algorithmic Graph Theory1UE1.5Graph Theoretic Algorithms1UE1.5Image and Video Understanding2VO3.0Image Understanding1KU2.0Image and Video Understanding1KU2.0Image Understanding1KU2.0Practice of Digital Transformation1VO1.5Information and Communication Management1VO1.5Information Management3VU4.0Information Management1VO1.5Information Management3VU4.0Information Management2VO3.0Privacy Enhancing Technologies2VO3.0IT Security2VO3.0Privacy Enhancing Technologies1KU2.0Information Management2VO3.0Privacy Enhancing Technologies1KU2.0Information Management2VO3.0Marke	Intelligent Systems	1	KU	2.0	Expert Systems	1	KU	2.0
General Management, Case Studies3SE3.0General Management, Case Studies1VO1.5Marketing Management, Case Studies2UE3.0General Management, Case Studies2UE3.0Advanced and Algorithmic Graph Theory3VO4.5Graph Theoretic Algorithms3VO4.5Advanced and Algorithmic Graph Theory1UE1.5Graph Theoretic Algorithms1UE1.5Image and Video Understanding2VO3.0Image Understanding2VO3.0Image and Video Understanding1KU2.0Image Understanding1KU2.0Practice of Digital Transformation1VO1.5Information and Communication Management1VO1.5Practice of Digital Transformation1UE1.5Information Management1VO1.5Information Management3VU4.0Information Management1VO1.5Privacy Enhancing Technologies2VO3.0IT Security2VO3.0Privacy Enhancing Technologies1KU2.0Logistics1KU2.0Modelling and Optimisation in Pro- duction and Logistic Systems2VU2.0Logistics1UE1.5Marketing Management3SE3.0Marketing Management1UE1.5Deep Learning2VO3.0Narketing Management1 </td <td>Automotive Engineering for Electrical, Information and Computer Engineer- ing</td> <td>2</td> <td>VO</td> <td>3.0</td> <td>Automotive Engineering for Electrical Engineering and Telematics</td> <td>2</td> <td>VO</td> <td>3.0</td>	Automotive Engineering for Electrical, Information and Computer Engineer- ing	2	VO	3.0	Automotive Engineering for Electrical Engineering and Telematics	2	VO	3.0
ImageImageImageGeneral Management, Case Studies2UE3.0Advanced and Algorithmic Graph Theory3VO4.5Graph Theoretic Algorithms3VO4.5Advanced and Algorithmic Graph Theory1UE1.5Graph Theoretic Algorithms1UE1.5Image and Video Understanding2VO3.0Image Understanding2VO3.0Image and Video Understanding1KU2.0Image Understanding1KU2.0Practice of Digital Transformation1VO1.5Information and Communication Management1VO1.5Information Management3VU4.0Information Management1VO1.5Information Management3VU4.0Information Management1VO1.5Information Management3VU4.0Information Management2UE3.0Privacy Enhancing Technologies2VO3.0IT Security2VO3.0Privacy Enhancing Technologies1KU2.0Information Management1VO1.5Modelling and Optimisation in Pro- duction and Logistic Systems2VU2.0Logistics1UE1.5Marketing Management3SE3.0Marketing Management2VO3.01.5Marketing Management3SE3.0Marketing Management1UE1.5 <tr< td=""><td>General Management, Case Studies</td><td>3</td><td>SE</td><td>3.0</td><td>General Management, Case Studies</td><td>1</td><td>VO</td><td>1.5</td></tr<>	General Management, Case Studies	3	SE	3.0	General Management, Case Studies	1	VO	1.5
Advanced and Algorithmic Graph Theory3VO4.5Graph Theoretic Algorithms3VO4.5Advanced and Algorithmic Graph Theory1UE1.5Graph Theoretic Algorithms1UE1.5Image and Video Understanding2VO3.0Image Understanding2VO3.0Image and Video Understanding1KU2.0Image Understanding1KU2.0Practice of Digital Transformation1VO1.5Information and Communication Management1VO1.5Practice of Digital Transformation1UE1.5Information and Communication Management1VO1.5Information Management3VU4.0Information Management1VO1.5Information Management2VO3.0IT Security2VO3.0Privacy Enhancing Technologies2VO3.0IT Security1KU2.0Modelling and Optimisation in Pro- duction and Logistic Systems2VU2.0Logistics1UE1.5Marketing Management3SE3.0Marketing Management2VO3.0Deep Learning2VO3.0Neural Networks2VO3.0					General Management, Case Studies	2	UE	3.0
Advanced and Algorithmic Graph Theory1UE1.5Graph Theoretic Algorithms1UE1.5Image and Video Understanding2VO3.0Image Understanding2VO3.0Image and Video Understanding1KU2.0Image Understanding1KU2.0Practice of Digital Transformation1VO1.5Information and Communication Management1VO1.5Practice of Digital Transformation1UE1.5Information and Communication Management1UE1.5Information Management3VU4.0Information Management1VO1.5Information Management2VO3.0IT Security2VO3.0Privacy Enhancing Technologies2VU3.0IT Security1KU2.0Modelling and Optimisation in Pro- duction and Logistic Systems2VU2.0Logistics1UE1.5Marketing Management3SE3.0Marketing Management2VO3.0Deep Learning2VO3.0Neural Networks2VO3.0	Advanced and Algorithmic Graph Theory	3	VO	4.5	Graph Theoretic Algorithms	3	VO	4.5
Image and Video Understanding2VO3.0Image Understanding2VO3.0Image and Video Understanding1KU2.0Image Understanding1KU2.0Practice of Digital Transformation1VO1.5Information and Communication Management1VO1.5Practice of Digital Transformation1UE1.5Information and Communication Management1UE1.5Information Management3VU4.0Information Management1VO1.5Information Management3VU4.0Information Management1VO1.5Privacy Enhancing Technologies2VO3.0IT Security2VO3.0Privacy Enhancing Technologies1KU2.0Information Management1VO1.5Modelling and Optimisation in Pro- duction and Logistic Systems2VU2.0Logistics1VO1.5Marketing Management3SE3.0Marketing Management2VO3.0Deep Learning2VO3.0Neural Networks2VO3.0	Advanced and Algorithmic Graph Theory	1	UE	1.5	Graph Theoretic Algorithms	1	UE	1.5
Image and Video Understanding1KU2.0Image Understanding1KU2.0Practice of Digital Transformation1VO1.5Information and Communication Management1VO1.5Practice of Digital Transformation1UE1.5Information and Communication Management1UE1.5Information Management3VU4.0Information Management1VO1.5Information Management3VU4.0Information Management1VO1.5Privacy Enhancing Technologies2VO3.0IT Security2VO3.0Privacy Enhancing Technologies1KU2.0IT Security1KU2.0Modelling and Optimisation in Pro- duction and Logistic Systems2VU2.0Logistics1VO1.5Marketing Management3SE3.0Marketing Management2VO3.0Deep Learning2VO3.0Neural Networks2VO3.0	Image and Video Understanding	2	VO	3.0	Image Understanding	2	VO	3.0
Practice of Digital Transformation1VO1.5Information and Communication Management1VO1.5Practice of Digital Transformation1UE1.5Information and Communication Management1UE1.5Information Management3VU4.0Information Management1VO1.5Information Management3VU4.0Information Management1VO1.5Privacy Enhancing Technologies2VO3.0IT Security2VO3.0Privacy Enhancing Technologies1KU2.0IT Security1KU2.0Modelling and Optimisation in Production and Logistic Systems2VU2.0Logistics1VO1.5Marketing Management3SE3.0Marketing Management2VO3.0Deep Learning2VO3.0Neural Networks2VO3.0	Image and Video Understanding	1	KU	2.0	Image Understanding	1	KU	2.0
Practice of Digital Transformation1UE1.5Information and Communication Management1UE1.5Information Management3VU4.0Information Management1VO1.5Information Management2UE3.0Information Management2UE3.0Privacy Enhancing Technologies2VO3.0IT Security2VO3.0Privacy Enhancing Technologies1KU2.0IT Security1KU2.0Modelling and Optimisation in Production and Logistic Systems2VU2.0Logistics1VO1.5Marketing Management3SE3.0Marketing Management2VO3.0Deep Learning2VO3.0Neural Networks2VO3.0	Practice of Digital Transformation	1	VO	1.5	Information and Communication Management	1	VO	1.5
Information Management3VU4.0Information Management1VO1.5Information Management2UE3.0Information Management2UE3.0Privacy Enhancing Technologies2VO3.0IT Security2VO3.0Privacy Enhancing Technologies1KU2.0IT Security1KU2.0Modelling and Optimisation in Production and Logistic Systems2VU2.0Logistics1VO1.5Marketing Management3SE3.0Marketing Management2VO3.0Deep Learning2VO3.0Neural Networks2VO3.0	Practice of Digital Transformation	1	UE	1.5	Information and Communication Management	1	UE	1.5
Image: Privacy Enhancing Technologies2VO3.0Information Management2UE3.0Privacy Enhancing Technologies1KU2.0IT Security1KU2.0Modelling and Optimisation in Pro- duction and Logistic Systems2VU2.0Logistics1VO1.5Marketing Management3SE3.0Marketing Management2VO3.0Deep Learning2VO3.0Neural Networks2VO3.0	Information Management	3	VU	4.0	Information Management	1	VO	1.5
Privacy Enhancing Technologies2VO3.0IT Security2VO3.0Privacy Enhancing Technologies1KU2.0IT Security1KU2.0Modelling and Optimisation in Pro- duction and Logistic Systems2VU2.0Logistics1VO1.5Marketing Management3SE3.0Marketing Management2VO3.0Deep Learning2VO3.0Neural Networks2VO3.0					Information Management	2	UE	3.0
Privacy Enhancing Technologies1KU2.0IT Security1KU2.0Modelling and Optimisation in Pro- duction and Logistic Systems2VU2.0Logistics1VO1.5Marketing Management3SE3.0Marketing Management2VO3.0Deep Learning2VO3.0Neural Networks2VO3.0	Privacy Enhancing Technologies	2	VO	3.0	IT Security	2	VO	3.0
Modelling and Optimisation in Pro- duction and Logistic Systems2VU2.0LogisticsIVO1.5Marketing Management3SE3.0Marketing Management2VO3.0Deep Learning2VO3.0Neural Networks2VO3.0	Privacy Enhancing Technologies	1	KU	2.0	IT Security	1	KU	2.0
Marketing Management3SE3.0Marketing Management2VO3.0Deep Learning2VO3.0Neural Networks2VO3.0	Modelling and Optimisation in Pro-	2	VU	2.0	Logistics	1	VO	1.5
Marketing Management3SE3.0Marketing Management2VO3.0Deep Learning2VO3.0Neural Networks1UE1.5					Logistics	1	UE	1.5
Deep Learning2VO3.0Neural Networks2VO3.0	Marketing Management	3	SE	3.0	Marketing Management	2	VO	3.0
Deep Learning 2 VO 3.0 Neural Networks 2 VO 3.0					Marketing Management	1	UE	1.5
	Deep Learning	2	VO	3.0	Neural Networks	2	VO	3.0

Deep Learning	1	KU	2.0	Neural Networks	1	KU	2.0
Photonic Sensors	2	VO	3.0	Optical Measurement Principles	2	VO	3.0
Numerical Optimisation	3	VO	4.5	Optimisation for Computer Science	2	VO	3.0
Numerical Optimisation	2	UE	2.5	Optimisation for Computer Science	1	UE	2.0
Seminar Pattern Recognition	3	SE	5.0	Pattern Recognition, Seminar	3	SE	5.0
Dimensioning of Electronic Circuits	2	UE	3.0	Practical Analog Circuit Design	2	UE	3.0
Dimensioning of Electronic Circuits,	1	LU	2.0	Practical Analog Circuit Design, La-	2	LU	2.0
Laboratory Process Management	1	SE	4.0	boratory Process Management	2	VO	3.0
		52	4.0	Process Management	2		2.0
	2		F 0		2 1	VO	3.0
GPO Programming	3	VU	5.0		1	VU	1.5
				Real-Time Graphics 2	2	KU	4.0
Secure Software Development	2	VO	3.0	Security Aspects in Software Devel- opment	2	VO	3.0
Secure Software Development	1	KU	2.0	Security Aspects in Software Devel- opment	1	KU	2.0
Secure Application Design	2	VO	3.0	Selected Topics IT Security 1	2	VO	3.0
Secure Application Design	1	KU	2.0	Selected Topics IT Security 1	1	KU	2.0
Selected Topics of RFID Sensor Sys- tems	2	VO	3.0	Selected Topics RFID	2	VO	3.0
Seminar/Project Information Security	4	SP	10	Seminar/Project Applied Information Processing	6	SP	10
Seminar/Project Brain Computer In- terface	4	SP	10	Seminar/Project Brain-Computer In- terface	6	SP	10
Seminar/Project Computational Elec- trodynamics	4	SP	10	Seminar/Project Computational Elec- trodynamics	6	SP	10
Seminar/Project Visual Computing	4	SP	10	Seminar/Project Computer Graphics	6	SP	10
Seminar/Project Electronics	4	SP	10	Seminar/Project Electronics	6	SP	10
Seminar/Project Machine Learning	4	SP	10	Seminar/Project Machine Learning	6	SP	10
and Neuroinformatics	-	00	10	and Neuroinformatics		00	10
niques	4	5P	10	niques	6	5P	10
Seminar/Project Modelling, Simula- tion and Control	4	SP	10	Seminar/Project Modelling, Simula- tion, and Control	6	SP	10
Seminar/Project Robotics	4	SP	10	Seminar/Project Robotics	6	SP	10
Seminar/Project Signal Processing	4	SP	10	Seminar/Project Signal Processing	6	SP	10
Seminar/Project Software Technology	4	SP	10	Seminar/Project Software Technol-	6	SP	10
Seminar/Project Speech Communica-	4	SP	10	Seminar/Project Speech Communi- cation	6	SP	10
Seminar/Project Technical Informatics	4	SP	10	Seminar/Project Technical Informat- ics	6	SP	10
Seminar/Project Telecommunications	4	SP	10	Seminar/Project Telecommunica- tions	6	SP	10
Speech Signal Processing	2	VO	3.0	Speech Communication 1	2	VO	3.0
Start-Up Garage	2	SE	2.0	Start-Ups and Small Business Man-	3	VU	3.0
Digital System Integration and Pro- gramming	3	VU	5.0	System-on-Chip Architectures and Modelling	3	VU	5.0
Value Engineering	3	VU	3.0	Value Management I	1	VO	1.5
				Value Management I	1	UE	1.5
Gender & Technology 2	2	SE	4.0	Gender & Technology 2	2	SE	5.0

In contrast, a recognition list defines when successfully completed courses of the previous curriculum are recognised as successfully completed courses of this curriculum, with no automatic crediting being provided in the opposite direction.

A complete overview of all equivalencies and recognitions is available on the website of the Dean's Office of Computer Science and Biomedical Engineering(<u>csbme.tugraz.at</u> and at TU4U at the latest version at any time.

Part 3 of the Annex:

Recommended free-choice courses

Free-choice courses may be freely chosen from the courses offered at any recognised national or international universities and also at universities of applied sciences and universities of teacher education, according to § 5b of this curriculum.

In order to broaden the basic knowledge students acquire in the subject areas of this degree programme, courses in foreign languages, social competence, technology assessment as well as women's and gender studies are recommended. In particular, we would like to refer students to the courses offered by the Graz University of Technology service department Languages, Key Competencies and In-House Training or "treffpunkt sprachen" and Centre for Social Competence of the University of Graz as well as the Science, Technology and Society Unit.

Part 4 of the Annex:

Types of courses offered by Graz University of Technology

The types of courses are defined in the relevant regulations of the standard curriculum (decision of the Senate of Graz University of Technology dated October 6, 2008, announced in the University Gazette No. 5 dated December 3, 2008), as follows:

1. Lectures: VO

In lecture-type courses, students are given a didactically well-structured introduction to the sub-areas of the subject area and its methods. In lectures, the content and methods of a subject area are presented.

2. Exercise-based courses: UE, KU, PR, EX

In exercises, abilities and skills are taught as part of a scientific pre-vocational education and training to deepen or broaden the subject matter of the respective lectures. These exercises may comprise practical, experimental, theoretical and/or design work. The curriculum may specify that the successful completion of the exercise is a requirement to register for the examination of the respective lecture.

a) UE

In exercises, students develop the ability to apply their subject knowledge to solve specific problems.

b) KU

In design exercises, abilities and skills are taught as part of a scientific prevocational education and training to deepen or broaden the subject matter of the respective lectures by means of design work. Special equipment or a specially equipped room is required.

c) PR

In projects, experimental, theoretical and/or design applied work is carried out, or small research papers are written, taking into account all necessary steps. Projects must be completed with a written paper that is part of the assessment. Projects can be carried out as teamwork or individual work; in the case of teamwork, it must still be possible to assess individual performance within the team.

d) EX

Excursion-type courses help to illustrate and consolidate the content of this type of course. Due to their practical relevance outside the place of study, excursions help to illustrate the content developed in other types of courses.

3. Lecture with integrated exercises VU

In addition to the introduction in sub-areas of the subject area and its methods, lectures with integrated exercises (VU) also offer guidance on independent acquisition of knowledge or independent application using examples. The percentage of lectures and exercises is to be specified in the curriculum. These courses are courses with continuous assessment.

4. Laboratory courses: LU

Laboratory courses (LU) deepen and/or broaden the subject matter of the respective lectures by means of practical, experimental or design work. Students are taught abilities and skills as part of a scientific pre-vocational education and training with particularly intensive tutoring. An essential component of the laboratory courses is the drawing up of short logs on the work carried out.

5. Seminar-type courses: SE, SP

Seminar-type courses enhance scientific work and discussion, and are intended to introduce students to expert-level discourse and argumentation. In this context, students have to write papers or give an oral presentation and take part in critical discussions. Seminars are courses with continuous assessment.

a) SE

Seminars introduce students to scientific methods, to the development and critical assessment of their own work results, to special topics in scientific literature and provide them with exercises in technical discussions.

b) SP

In seminar projects, students apply scientific methods to work on experimental, theoretical and/or design applied problems; or they carry out short research assignments, taking into account all the necessary steps. Seminar projects are completed with a written paper and an oral presentation that are part of the assessment. Seminar projects can be carried out as teamwork or individual work; in the case of teamwork, it must still be possible to assess individual performance within the team.

The regulations referred to at the beginning also encompass provisions concerning the implementation and assessment of the different types of courses. In particular, they stipulate the following:

In lectures (type of course VO), the assessment takes place by way of a final examination that – at the discretion of the examiner – may be a written examination, an oral examination, a written and an oral examination, as well as a written or an oral examination. The examination procedure must be announced in the course description.

Courses of the type VU, SE, SP, UE, KU, PR, EX and LU are courses with continuous assessment.

Part 5 of the Annex:

5.1 Admission to the degree programme

According to § 1 of this curriculum, graduates of the Bachelor's Degree Programme Information and Computer Engineering are admitted without further restrictions.

Graduates of the following bachelor's degree programmes are admitted to the Master's Degree Programme Information and Computer Engineering, but have to complete a list of prescribed courses of the Bachelor's Degree Programme Information and Computer Engineering as part of the elective subject; these courses become compulsory subjects due to the admission to the master's degree programme. They replace a corresponding amount of achievements from the elective subject. If the scope of the courses exceeds the intended scope of the elective subject of 14 ECTS credit points, the officers responsible for study matters determine which percentage of these courses are assigned to the major or minor. The total number of major, compulsory subject and elective subject must in any case amount to at least 74 ECTS credit points.

If the prescribed courses were already completed as part of the bachelor's degree programme that grants admission to the master's degree programme, § 4 of this curriculum applies accordingly.

5.2 Admission of graduates of the Bachelor's Degree Programmes Computer Science and Software Engineering and Management

Graduates of the Bachelor's Degree Programmes **Computer Science** and **Software Engineering and Management** at Graz University of Technology (curriculum 2019) are admitted to this master's degree programme, with the following courses of the Bachelor's Degree Programme Information and Computer Engineering being stipulated as compulsory subjects according to § 1 above:

Course	SSt	Туре	ECTS
Signal Processing	2	VO	3.0
Signal Processing	1	UE	1.5
Control Systems 1	3	VO	4.0
Control Systems 1	1	UE	1.5
Fundamentals of Electrical Engineering ICE	3	VO	4.5
Fundamentals of Electrical Engineering ICE	1	UE	1.0
Introduction to Electrical Engineering	2	LU	3.0
Communication Engineering	3	VO	4.5
Electronic Circuit Design 1	2	VO	3.0
Total compulsory subject			26.0

5.3 Admission of graduates of the Bachelor's Degree Programmes Electrical Engineering, Electrical Engineering and Audio Engineering as well as Biomedical Engineering

Graduates of the Bachelor's Degree Programmes **Electrical Engineering**, **Electrical Engineering and Audio Engineering** as well as **Biomedical Engineering** at Graz University of Technology (curriculum 2016 or 2017) are admitted to this master's degree programme, with the following courses of the Bachelor's Degree Programme Information and Computer Engineering being stipulated as compulsory subjects according to § 1 above:

Course	SSt	Туре	ECTS
Data Structures and Algorithms 1	2	VO	3.0
Data Structures and Algorithms 1	1	UE	1.5
Databases	2	VU	3.0
Information Security	2.5	VO	4.0
Information Security	2.5	KU	3.0
Computer Graphics and -Vision	2	VU	2.5
Software Development Practical Exercises	1	VO	1.5
Software Development Practical Exercises	3	KU	4.0
Computer Organisation and Networks	2.5	VO	4.0
Total compulsory subject			26.5

If the prescribed courses have already been partially completed according to the 2015 curriculum, the following equivalence list applies:

Courses Curriculum 2019	SS t	Ty pe	ECT S	Courses Curriculum 2015		Ty pe	ECT S
Data Structures and Algorithms 1	2	VO	3.0	Data Structures and Algorithms	2	VO	3.0
Data Structures and Algorithms 1	1	UE	1.5	Data Structures and Algorithms	1	UE	1.5
Databases	2	VU	3.0	Databases	2	VU	3.0
Information Security	2.5	VO	4.0	Introduction to Information Security		VO	3.0
Information Security	2.5	KU	3.0	Introduction to Information Security		KU	1.5
Computer Graphics and Vision	2	VU	2.5	Computer Graphics 1		VU	2.5
User Interfaces	1.5	VU	2.5	Computer Vision 1		VU	2.0
Software Development Practical Exer- cises	1	vo	1.5			VII	5.0
Software Development Practical Exer- cises	3	κυ	4.0	Software Development practical	3	vu	5.0
Computer Organization and Naturaly	25	VO	4.0	Computer and Communication Net- works	2	VO	3.0
Computer Organisation and Networks		VO	4.0	Computer and Communication Net- works	1	KU	1.5
Total compulsory subject			29.0	Total compulsory subject			26.0

Part 6 of the Annex

Addition to § 4.4 Balance

Achievements from the subject area information processing include courses starting with the numbers 5 or 7. Achievements from the subject area electrical engineering and information technology include courses starting with the number 4. In addition, the courses from the table below are also included in this category.

Course	SSt	Туре	ECTS
Algorithms in Acoustics and Computer Music 01	2	VO	3.0
Algorithms in Acoustics and Computer Music 01	1	UE	1.5
Dynamical Systems	3	VU	5.0
Automotive Power Transmissions	2	VU	3.0
Piston Engines, Introduction	2	VO	3.0
Thermodynamics Introduction	2	VO	3.0
Automotive Engineering for Electrical, Information and Computer Engineering	2	VO	3.0

Part 7 of the Annex

Definitions

<u>Major</u>: The major must comprise at least 40 ECTS credit points from one of the technical catalogues of electives (c01-c08)

<u>Minor</u>: The minor must comprise at least 20 ECTS credit points from one of the catalogues of electives (c01-c08, b01), the catalogue of the major subject area may not be selected for this purpose.

<u>Elective subject</u>: The elective is freely selectable from the courses offered in the Master's Degree Programme Information and Computer Engineering (c01-c08, s01, b01).

<u>Compulsory subject</u>: As part of the admission to the Master's Degree Programme Information and Computer Engineering, courses from the Bachelor's Degree Programme Computer Engineering can be prescribed as a compulsory subject for the Master's Degree Programme Information and Computer Engineering; the compulsory subject replaces the minor. If more than 14 ECTS credit points are required, the officers responsible for study matters determines which percentage of these credits are allocated to the major or minor subject area.

<u>Free-choice subject</u>: The free-choice course is comprised of the courses offered at any recognised national or international universities and also at universities of applied sciences and universities of teacher education.

<u>Compulsory elective subject</u>: A subject is a combination of coherent courses that are individually defined or selected from a catalogue of electives and then named after the corresponding catalogue of electives. Both the major and the minor can be replaced by a compulsory elective subject.

<u>Catalogue of electives</u>: Collection of related courses defined in the curriculum from which the courses can be selected.

<u>Supplementary catalogue</u>: Collection of supplementary courses defined in the curriculum, which can be chosen as elective subjects.

<u>Compulsory course</u>: A compulsory course represents a course defined in the catalogue of electives, which, if this catalogue of electives is chosen, must be completed.

<u>Compulsory elective course</u>: A catalogue of electives may lay down rules for compulsory elective courses, according to which, if this catalogue of electives is chosen, courses must be taken.

<u>Mentor</u>: A mentor supervises the studies of a student and has responsibilities and rights defined in the curriculum.